General
Control System Upgrades
Paper Title Page
TUMBCMO18 Upgrade of the AGOR Cyclotron Control System at UMCG-PARTREC 391
 
  • O.J. Kuiken, A. Gerbershagen, P. Schakel, J. Schwab, J.K. van Abbema
    PARTREC, Groningen, The Netherlands
 
  The AGOR cyclotron began development in the late 1980s and was commissioned in 1997. In 2020, when the facility was transferred from the University of Groningen to the University Medical Center Groningen, it marked the start of an upgrade process aimed at ensuring reliable operation. Recent, current and upcoming upgrades and additions encompass the following: Firstly, the current OT network uses custom IO modules based on the outdated Bitbus fieldbus. A pilot study was conducted to evaluate the use of NI CompactRIO-based subracks for analog and digital IO. Also, a similar PLC-based solution is currently under investigation. Secondly, the current control system is based on Vsystem/Vista and alternatives are being investigated. Thirdly, PLCs are upgraded to a newer generation. Fourthly, the current harp electronics and beam current readout electronics both use components that are hard to procure and use a Bitbus interface. New, in-house designs constructed as generic I-V converters eliminate this fieldbus dependency. Fifthly, the present RF slow control employs feedback loops to regulate the RF power and phase. Our new design incorporates functional improvements and condenses several discrete modules into a single cassette, resulting in fewer expected issues with faulty cables and connectors, and enabling us to maintain a larger stock of spares. Finally, the UMCG Radiotherapy department is constructing a new beamline with support from the technical staff at UMCG-PARTREC. The control will be based on NI CompactRIO.  
slides icon Slides TUMBCMO18 [0.771 MB]  
poster icon Poster TUMBCMO18 [2.389 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO18  
About • Received ※ 06 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 30 November 2023 — Issued ※ 01 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO19 MAX IV Laboratory’s Control System Evolution and Future Strategies 395
 
  • V. Hardion, P.J. Bell, T. Eriksson, M. Lindberg, P. Sjöblom, D.P. Spruce
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV Laboratory, a 4th generation synchrotron radiation facility located in southern Sweden, has been operational since 2016. With multiple beamlines and experimental stations completed and in steady use, the facility is now approaching the third phase of development, which includes the final two of the 16 planned beamlines in user operation. The focus is on achieving operational excellence by optimizing reliability and performance. Meanwhile, the strategy for the coming years is driven by the need to accommodate a growing user base, exploring the possibility of operating a Soft X-ray Laser (SXL), and achieving the diffraction limit for 10 keV of the 3 GeV. The Technical Division is responsible for the control and computing systems of the entire laboratory. This new organization provides a coherent strategy and a clear vision, with the ultimate goal of enabling science. The increasing demand for more precise and efficient control systems has led to significant developments and maintenance efforts. Pushing the limits in remote access, data generation, time-resolved and fly-scan experiments, and beam stability requires the proper alignment of technology in IT infrastructure, electronics, software, data analysis, and management. This article discusses the motivation behind the updates, emphasizing the expansion of the control system’s capabilities and reliability. Lastly, the technological strategy will be presented to keep pace with the rapidly evolving technology landscape, ensuring that MAX IV is prepared for its next major upgrade.  
slides icon Slides TUMBCMO19 [8.636 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO19  
About • Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 24 November 2023 — Issued ※ 29 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO20 Introduction and Status of Fermilab’s ACORN Project 401
 
  • D. Finstrom, E.G. Gottschalk
    Fermilab, Batavia, Illinois, USA
 
  Modernizing the Fermilab accelerator control system is essential to future operations of the laboratory’s accelerator complex. The existing control system has evolved over four decades and uses hardware that is no longer available and software that uses obsolete frameworks. The Accelerator Controls Operations Research Network (ACORN) Project will modernize the control system and replace end-of-life power supplies to enable future accelerator complex operations with megawatt particle beams. An overview of the ACORN Project will be presented along with a summary of recent R&D activities.  
slides icon Slides TUMBCMO20 [0.581 MB]  
poster icon Poster TUMBCMO20 [0.455 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO20  
About • Received ※ 04 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO21 SOLEIL II: Towards A Major Transformation of the Facility 404
 
  • Y.-M. Abiven, S.-E. Berrier, A. Buteau, I. Chado, E. Fonda, E. Frahi, B. Gagey, L.S. Nadolski, P. Pierrot
    SOLEIL, Gif-sur-Yvette, France
 
  Operational since 2008, SOLEIL [1] is providing users with access to a wide range of experimental techniques thanks to its 29 beamlines, covering a broad energy range from THz to hard X-ray. In response to new scientific and societal challenges, SOLEIL is undergoing a major transformation with the ongoing SOLEIL II project. This project includes designing an ambitious Diffraction Limited Storage Ring (DLSR) [2] to increase performances in terms of brilliance, coherence, and flux, upgrading the beamlines to provide advanced methods, and driving a digital transformation in data- and user- oriented approaches. This paper presents the project organization and technical details studies for the ongoing upgrades, with a focus on the digital transformation required to address future scientific challenges. It will depict the computing and data management program with the presentation of the targeted IT architecture to improve automated and data-driven processes for optimizing instrumentation. The optimization program covers the facility reconstruction period as well as future operation, including the use of Artificial Intelligence (AI) techniques for data production management, decision-making, complex feedbacks, and data processing. Real-time processes are to be applied in the acquisition scanning design, where detectors and robotic systems will be coupled to optimize beam time.  
slides icon Slides TUMBCMO21 [0.663 MB]  
poster icon Poster TUMBCMO21 [1.908 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO21  
About • Received ※ 04 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP002 Replacing Core Components of the Processing and Presentation Tiers of the MedAustron Control System 473
 
  • A. Höller, L. Adler, M. Eichinger, D. Gostinski, A. Kerschbaum-Gruber, C. Maderböck, M. Plöchl, S. Vörös
    EBG MedAustron, Wr. Neustadt, Austria
 
  MedAustron is a synchrotron-based ion therapy and research facility in Austria, that has been successfully treating cancer patients since 2016. MedAustron acts as a manufacturer of its own accelerator with a strong commitment to continuous development and improvement for our customers, our users and our patients. The control system plays an integral role in this endeavour. The presented project focuses on replacing the well-established WinCC OA SCADA system, enforcing separation of concerns mainly using .NET and web technologies, along with many upgrades of features and concepts where stakeholders had identified opportunities for improvement during our years of experience with the former control system setup for commissioning, operation and maintenance, as well as improving the user experience. Leveraging our newly developed control system API, we are currently working on an add-on called "Commissioning Worker". The concept foresees the functionality for users to create Python scripts, upload them to the Commissioning Worker, and execute them on demand or on a scheduled basis, making it easy and highly time-efficient to execute tasks and integrate with already established Python frameworks for analysis and optimization. This contribution outlines the key changes and provides examples of how the user experience has been improved.  
poster icon Poster TUPDP002 [4.733 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP002  
About • Received ※ 03 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 25 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP012 Tango at LULI 509
 
  • S. Marchand, J.M. Bruneau, L. Ennelin, S.M. Minolli, M. Sow
    LULI, Palaiseaux, France
 
  Funding: CNRS, École polytechnique, CEA, Sorbonne Université
Apollon, LULI2000 and HERA are three Research Infrastructures of the Centre national de la recherche scientifique (CNRS), École polytechnique (X), Commissariat à l’Énergie Atomique et aux Energies Alternatives (CEA) and Sorbonne University (SU). Now in past-commissioning phase, Apollon is a four beam laser, multi-petawatt laser facility fitted with instrumentation technologies on the cutting edge with two experimental areas (short–up to 1m–and long focal–up to 20m, 32m in the future). To monitor the laser beam characteristics through the interaction chambers, more than 300 devices are distributed in the facility and controlled through a Tango bus. This poster presents primarily a synthetic view of the Apollon facility, from network to hardware and from virtual machines to software under Tango architecture. We can here have an overview of the different types of devices which are running on the facility and some GUIs developed with the exploitation team to insure the best possible way of running the lasers. While developments are still currently under work for this facility, upgrading the systems of LULI2000 from one side and HERA from the other side are underway by the Control-Command & Supervision team and would follow the same specifications to offer shared protocols and knowledge.
 
poster icon Poster TUPDP012 [2.267 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP012  
About • Received ※ 12 October 2023 — Revised ※ 09 November 2023 — Accepted ※ 17 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP016 Migrating from Alarm Handler to Phoebus Alarm-Server at BESSY II 526
 
  • M. Gotz, T. Birke
    HZB, Berlin, Germany
 
  The BESSY II lightsource has been in operation at Helmholtz-Center Berlin (HZB) for 25 years and is expected to be operated for more than the next decade. The EPICS Alarm Handler (alh) has served as the basis for a reliable alarm system for BESSY II as well as other facilities and laboratories operated by HZB. To preempt software obsolescence and enable a centralized architecture for other Alarm Handlers running throughout HZB, the alarm system is being migrated to the alarm-service developed within the Control System Studio/Phoebus ecosystem. To facilitate operation of the Alarm Handler, while evaluating the new system, tools were developed to automate creation of the Phoebus alarm-service configuration files in the control systems’ build process. Additionally, tools and configurations were devised to mirror the old system’s key features in the new one. This contribution presents the tools developed and the infrastructure deployed to use the Phoebus alarm-service at HZB.  
poster icon Poster TUPDP016 [0.343 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP016  
About • Received ※ 29 September 2023 — Accepted ※ 06 December 2023 — Issued ※ 11 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP018 About the New Linear Accelerator Control System at GSI 529
 
  • P. Gerhard
    GSI, Darmstadt, Germany
 
  The first accelerator at GSI, UNILAC, went into operation in the early 1970s. Today, UNILAC is a small accelerator complex, consisting of several ion sources, injector and main linacs comprising 23 RF cavities, several strippers and other instrumentation, serving a number of experimental areas and the synchrotron SIS18. Three ion species can be provided at different energies simultaneously in a fast time multiplex scheme, two at a time. The UNILAC is going to be the heavy ion injector linac for FAIR, supported by a dedicated proton linac. The current linac control system dates back to the 1990s. It was initiated for SIS18 and ESR, which enlarged GSI at the time, and was retrofitted to the UNILAC. The linear decelerator HITRAP was added in the last decade, while an sc cw linac is under development. Today, SIS18, ESR and lately CRYRING are already operated by a new system based on the LHC Software Architecture LSA, as FAIR will be. In order to replace the outdated linac control system and simplify and unify future operation, a new control system on the same basis is being developed for all GSI linacs. This contribution reports about this venture from a machine physicist point of view.  
poster icon Poster TUPDP018 [2.886 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP018  
About • Received ※ 05 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 14 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP019 Operation of the ESR Storage Ring with the LSA Control System 534
 
  • S.A. Litvinov, R. Hess, B. Lorentz, M. Steck
    GSI, Darmstadt, Germany
 
  The LHC Software Architecture (LSA) has been applied to the accelerator complex GSI, Germany as a new control system. The Experimental Storage Ring (ESR) was recommissioned with the LSA and different accelerator and physics experiments were performed in the last several years. The overview of the ESR performance will be presented here. The features and challenges of the operation with LSA system will be outlined as well.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP019  
About • Received ※ 06 October 2023 — Revised ※ 29 November 2023 — Accepted ※ 20 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP024 Technical Design Concept and First Steps in the Development of the New Accelerator Control System for PETRAIV 552
 
  • R. Bacher, J.D. Behrens, T. Delfs, T. Tempel, J. Wilgen, T. Wilksen
    DESY, Hamburg, Germany
 
  At DESY, extensive technical planning and prototyping work is currently underway for the upgrade of the PETRAIII synchrotron light source to PETRAIV, a fourth-generation low-emittance machine. As part of this planned project, the accelerator control system will also be modernized. This paper reports on the main decisions taken in this context and gives an overview of the scope of the development and implementation work.  
poster icon Poster TUPDP024 [0.766 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP024  
About • Received ※ 14 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP028 Challenges of the COSY Synchrotron Control System Upgrade to EPICS 561
 
  • C. Böhme, C. Deliege, M. Simon, M. Thelen
    FZJ, Jülich, Germany
  • V. Kamerdzhiev
    GSI, Darmstadt, Germany
  • R. Modic, Ž. Oven
    Cosylab, Ljubljana, Slovenia
 
  The COSY (COoler SYncchrotron) at the Forschungszentrum Jülich is a hadron accelerator build in the early 90s, with work started in the late 80s. At this time the whole control system was based on a self-developed real-time operating system for Motorola m68k boards, utilizing, unusual for this time, IP-networks as transport layer. The GUI was completely based on Tcl/Tk. After 25 years of operation, in 2016, it was decided to upgrade the control system to EPICS and the GUI to CS-Studio, in order to e.g. allow a better automatization or automatized archiving of operational parameters. This was done together with Cosylab d.d. bit by bit while the synchrotron was in operation, and because of the complexity is still ongoing. The experiences of the stepwise upgrade process will be presented and a lessons learned will be emphasized.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP028  
About • Received ※ 06 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 14 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP034 GeCo: The Elettra 2.0 Beamline Control System 583
 
  • V. Chenda, A. Abrami, R. Borghes, A. Contillo, L. Cristaldi, M. Lucian, M. Prica, R. Pugliese, L. Rumiz, L. Sancin, M. Turcinovich
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The Elettra Synchrotron, located in Italy near Trieste, has been operating for users since 1994 being the first third generation light source for soft X-rays in Europe. To stay competitive for world-class photon science, a massive upgrade of the storage ring has been planned in 2025. The goal is to build an ultra-low emittance light source with ultra-high brilliance in the same building as the present storage ring. The downtime for installation and commissioning of Elettra 2.0 will last 18 months. In this plan, 20 of the present beamlines should be upgraded and 12 new beamlines are scheduled to be built. In this scenario, also the original beamline interlock and personnel safety systems are going to be upgraded using state of the art technologies. Siemens PLCs will be used for low level control, while higher level applications will be developed using the Tango framework. This work presents and describes the architecture of the future Elettra 2.0 beamline control system named GeCo, Gestione e Controllo in italian.  
poster icon Poster TUPDP034 [1.917 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP034  
About • Received ※ 06 October 2023 — Revised ※ 09 November 2023 — Accepted ※ 14 December 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP038 Status of Vacuum Control System Upgrade of ALPI Accelerator 595
 
  • L. Antoniazzi, A. Conte, C.R. Roncolato, G. Savarese
    INFN/LNL, Legnaro (PD), Italy
 
  The vacuum system of ALPI (Acceleratore Lineare Per Ioni) accelerator at LNL (Laboratori Nazionali di Legnaro), including around 40 pumping groups, was installed in the 90s. The control and supervision systems, composed by about 14 control racks, were developed in the same period by an external company, which produced custom solutions for the HW and SW parts. Control devices are based on custom PLCs, while the supervision system is developed in C and C#. The communication network is composed of multiple levels from serial standard to Ethernet passing true different devices to collect the data. The obsolescence of the hardware, the rigid system infrastructure, the deficit of spares parts and the lack of external support, impose a complete renovation of the vacuum system and relative controls. In 2022 the legacy high level control system part was substituted with a new one developed in EPICS (Experimental Physics and Industrial Control System) and CSS (Control System Studio)*. After that, we started the renovation of the HW part with the installation and integration of two new flexible and configurable low level control system racks running on a Siemens PLC and exploiting serial server to control the renewed pumping groups and pressure gauges. The plan for the next years is to replace the legacy hardware with new one retrieving spare parts, provide service continuity, improve PLC software and extend the EPICS control system with new features. This paper describes the adopted strategy and the upgrade status.
* G. Savarese et al., Vacuum Control System Upgrade for ALPI
accelerator, in Proc. IPAC-22, Bangkok, Thailand, doi:10.18429/JACoW-IPAC2022-MOPOMS045
 
poster icon Poster TUPDP038 [3.286 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP038  
About • Received ※ 04 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 17 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP042 Control and Data Acquisition System Upgrade in RFX-mod2 607
 
  • G. Martini, N. Ferron, A.F. Luchetta, G. Manduchi, A. Rigoni, C. Taliercio
    Consorzio RFX, Padova, Italy
  • P. Barbato
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy
 
  RFX-mod2, currently under construction at Consorzio RFX, is an evolution of the former RFX-mod experiment, with an improved shell and a larger set of electromagnetic sensors. This set, including 192 saddle coils, allows exploring a wide range of plasma control schemas, but at the same time poses a challenge for its Control and Data Acquisition System (CODAS). RFX-mod2 CODAS is required to provide the high-speed acquisition of a large set of signals and their inclusion in the Plasma Control System that must provide a sub-millisecond response to plasma instabilities. While brand new solutions are provided for the acquisition of the electromagnetic signals, involving Zynq-based ADC devices, other parts of the CODAS system have been retained from the former RFX-mod CODAS. The paper presents the solutions adopted in the new RFX-mod2 CODAS, belonging to three main categories: 1) Plasma Real-Time control, including both hardware solutions based on Zynq and the integration of data acquisition and real-time frameworks for its software configuration. For this purpose, MDSplus and MARTe2, two frameworks for data acquisition and real-time control, respectively, have been adopted, which are widely used in the fusion community. 2) Data acquisition, including upgrades performed to the former cPCI-based systems and new ad-hoc solutions based on RedPitaya. 3) Plant supervision, carried out in WinCC-OA and integrated with the data acquisition system via a new WinCC-OA database plugin.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP042  
About • Received ※ 05 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 16 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP047 Development of Operator Interface Using Angular at the KEK e⁻/e⁺ Injector Linac 631
 
  • M. Satoh, I. Satake
    KEK, Ibaraki, Japan
  • T. Kudou, S. Kusano
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
 
  At the KEK e⁻/e⁺ injector linac, the first electronic operation logbook system was developed using a relational database in 1995. This logbook system has the capability to automatically record detailed operational status changes. In addition, operators can manually input detailed information about operational problems, which is helpful for future troubleshooting. In 2010, the logbook system was improved with the implementation of a redundant database, an Adobe Flash based frontend, and an image file handling feature. In 2011, the CSS archiver system with PostgreSQL and a new web-based archiver viewer utilizing Adobe Flash. However, with the discontinuation of Adobe Flash support at the end of 2020, it became necessary to develop a new frontend without Flash for both the operation logbook and archiver viewer systems. For this purpose, the authors adopted the Angular framework, which is widely used for building web applications using JavaScript. In this paper, we report the development of operator interfaces using Angular for the injector linac.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP047  
About • Received ※ 05 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP048 The Upgrade of Pulsed Magnet Control System Using PXIe Devices at KEK LINAC 635
 
  • D. Wang, M. Satoh
    KEK, Ibaraki, Japan
 
  In the KEK electron-positron injector LINAC, the pulsed magnet control system modulates the magnetic field at intervals of 20 ms, enabling simultaneous injection into four distinct target rings: 2.5 GeV PF, 6.5 GeV PF-AR, 4 GeV SuperKEKB LER, and 7 GeV SuperKEKB HER. This system operates based on a trigger signal delivered from the event timing system. Upon the receiving specified event code, the PXI DAC board outputs a waveform to the pulse driver, which consequently determines the current of the pulsed magnet. The combination of Windows 8.1 and LabVIEW was utilized to implement the control system since 2017. Nonetheless, due to the cessation of support for Windows 8.1, a system upgrade has become imperative. To address this, Linux has been selected as a suitable replacement for Windows and the EPICS driver for PXIe devices is thus required. This manuscript introduces the development of the novel Linux-based pulsed magnet control system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP048  
About • Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 14 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP065 Introduction to the Control System of the PAL-XFEL Beamlines 655
 
  • G.S. Park, S-M. Hwang, M.Z. Jeong, W.U. Kang, C.Y. Lim
    PAL, Pohang, Republic of Korea
 
  The PAL-XFEL beamlines are composed of two different types of beamlines: a hard X-ray beamline and a soft X-ray beamline. The hard X-ray beamline generates free electron lasers with pulse energies ranging from 2-15 keV, pulse lengths of 10-35 fs, and arrival time errors of less than 20 fs from 4-11 GeV electron beams for X-ray Scattering & Spectroscopy (XSS) and Nano Crystallography & Coherent Imaging (NCI) experiments. On the other hand, the soft X-ray beamline generates free electron lasers with photon energies ranging from 0.25-1.25 keV, and with more than 1012 photons, along with 3 GeV electron beams for soft X-ray Scattering & Spectroscopy (SSS) experiments. To conduct experiments using the XFEL, precise beam alignment, diagnostics, and control of experimental devices are necessary. The devices of the three beamlines are composed of control systems based on the Experimental Physics and Industrial Control System (EPICS), which is a widely-used open-source software framework for distributed control systems. The beam diagnostic devices include QBPM (Quad Beam Position Monitor), photodiode, Pop-in monitor, and inline spectrometer, among others. Additionally, there are other systems such as CRL (Compound Refractive Lenses), KB mirror (Kirkpatrick-Baez mirror), attenuator, and vacuum that are used in the PAL-XFEL beamlines. We would like to introduce the control system, event timing, and network configuration for PAL-XFEL experiments.  
poster icon Poster TUPDP065 [1.116 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP065  
About • Received ※ 10 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP076 Preliminary Design for the ALBA II Control System Stack 685
 
  • S. Rubio-Manrique, F. Becheri, G. Cuní, R.H. Homs, Z. Reszela
    ALBA-CELLS, Cerdanyola del Vallès, Spain
 
  One of the main pillars of the ALBA Synchrotron Light Source (Barcelona, Spain) Strategy Plan is the preparation of ALBA to be upgraded to a fourth-generation light source. To accomplish this, a preliminary design of the accelerator has already been initiated in 2021. On the Computing side, the upgrade of the accelerator will require a comprehensive overhaul of most parts of the Control System, DAQ, Timing, and many other systems as well as DevOps strategies. This need for a major redesign will bring new architectural challenges, and opportunities to benefit from new technologies that were not present at the time ALBA was designed and build. This paper presents the preliminary design studies, pilot projects, new approaches to development coordination and management, and the preparation plan to acquire the knowledge and experience needed to excel in the ALBA II Control System Stack design.  
poster icon Poster TUPDP076 [1.095 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP076  
About • Received ※ 06 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP077 Towards the ALBA II : the Computing Division Preliminary Study 691
 
  • O. Matilla, J.A. Avila-Abellan, F. Becheri, S. Blanch-Torné, A.M. Burillo, A. Camps Gimenez, I. Costa, G. Cuní, T. Fernández Maltas, R.H. Homs, J. Moldes, E. Morales, C. Pascual-Izarra, S. Pusó Gallart, A. Pérez Font, Z. Reszela, B. Revuelta, A. Rubio, S. Rubio-Manrique, J. Salabert, N. Serra, X. Serra-Gallifa, N. Soler, S. Vicente Molina, J. Villanueva
    ALBA-CELLS, Cerdanyola del Vallès, Spain
 
  The ALBA Synchrotron has started the work for up-grading the accelerator and beamlines towards a 4th gen-eration source, the future ALBA II, in 2030. A complete redesign of the magnets lattice and an upgrade of the beamlines will be required. But in addition, the success of the ALBA II project will depend on multiple factors. First, after thirteen years in operation, all the subsystems of the current accelerator must be revised. To guarantee their lifetime until 2060, all the possible ageing and obsoles-cence factors must be considered. Besides, many tech-nical enhancements have improved performance and reliability in recent years. Using the latest technologies will also avoid obsolescence in the medium term, both in the hardware and the software. Considering this, the pro-ject ALBA II Computing Preliminary Study (ALBA II CPS) was launched in mid-2021, identifying 11 work packages. In each one, a group of experts were selected to analyze the different challenges and needs in the compu-ting and electronics fields for future accelerator design: from power supplies technologies, IOC architectures, or PLC-based automation systems to synchronization needs, controls software stack, IT Systems infrastructure or ma-chine learning opportunities. Now, we have a clearer picture of what is required. Hence, we can build a realistic project plan to ensure the success of the ALBA II. It is time to get ALBA II off the ground.  
poster icon Poster TUPDP077 [0.687 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP077  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP084
Control System for the MAX IV Transverse Deflecting Cavity Beamline  
 
  • Á. Freitas, N. Blaskovic Kraljevic, J. Brudvik, F.H. Holmlund, A. Johansson, M. Lindberg, E. Mansten, R. Svärd, C. Takahashi
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV 3 GeV LINAC serves as a full-energy injector for two electron storage rings and as a driver for the Short Pulse Facility (SPF) and a future Soft X-ray Laser (SXL). To achieve high temporal resolution for longitudinal beam characterization, a transverse deflecting cavity (TDC) system has been developed and installed in a dedicated electron beamline downstream of the LINAC. The TDC beamline comprises two consecutive 3 m long transverse S-band RF structures, followed by a variable vertical deflector dipole magnet used as an energy spectrometer. In this paper, we present the newly implemented control system and scanning routines for data acquisition and analyses. The control system enables precise manipulation of the TDC system, ensuring accurate measurement of longitudinal beam characteristics. The scanning routines facilitate systematic data acquisition for comprehensive beam analysis.  
poster icon Poster TUPDP084 [0.468 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP085 EPICS at FREIA Laboratory 718
 
  • K.J. Gajewski, K. Fransson
    Uppsala University, Uppsala, Sweden
 
  FREIA laboratory is a Facility for REsearch Instrumentation and Accelerator development at Uppsala University, Sweden. It was officially open in 2013 to test and develop superconducting accelerating cavities and their high power RF sources. The laboratory focuses on superconducting technology and accelerator development and conducts research on beam physics and light generation with charged particles, accelerator technology and instrumentation. From the very beginning EPICS* has been chosen as a control system for all the infrastructure and equipment in the lab. Use of EPICS allowed us to build a robust, expandable and maintainable control system with a very limited man power. The paper will present the choices we made and the problems we have solved to achieve this goal. We will show the current status of the control system and the strategy for the future.
* https://epics-controls.org/
 
poster icon Poster TUPDP085 [2.305 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP085  
About • Received ※ 27 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP091 Upgrade of the Process Control System for the Cryogenic Installation of the CERN LHC Atlas Liquid Argon Calorimeter 752
 
  • C.F. Fluder, C. Fabre, L.G. Goralczyk, M. Pezzetti, A. Zmuda
    CERN, Meyrin, Switzerland
  • K.M. Mastyna
    AGH, Cracow, Poland
 
  The ATLAS (LHC detector) Liquid Argon Calorimeter is classified as a critical cryogenic system due to its requirement for uninterrupted operation. The system has been in continuous nominal operation since the start-up of the LHC, operating with very high reliability and availability. Over this period, control system maintenance was focused on the most critical hardware and software interventions, without direct impact on the process control system. Consequently, after several years of steady state operation, the process control system became obsolete (reached End of Life), requiring complex support and without the possibility of further improvements. This led to a detailed review towards a complete upgrade of the PLC hardware and process control software. To ensure uninterrupted operation, longer equipment lifecycle, and further system maintainability, the latest technology was chosen. This paper presents the methodology used for the process control system upgrade during development and testing phases, as well as the experience gained during deployment. It details the architecture of the new system based on a redundant (Hot Standby) PLC solution, the quality assurance protocol used during the hardware validation and software testing phases, and the deployment procedure.  
poster icon Poster TUPDP091 [1.886 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP091  
About • Received ※ 03 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 11 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP093 CERN Proton Irradiation Facility (IRRAD) Data Management, Control and Monitoring System Infrastructure for post-LS2 Experiments 762
 
  • B. Gkotse, G. Pezzullo, F. Ravotti
    CERN, Meyrin, Switzerland
  • P. Jouvelot
    MINES Paris, PSL, Paris, Cedex 06,, France
 
  Funding: European Union’s Horizon 2020 Research and Innovation programme under GA no 101004761 and Horizon Europe Research and Innovation programme under Grant Agreement No 101057511.
Since upgrades of the CERN Large Hadron Collider are planned and design studies for a post-LHC particle accelerator are ongoing, it is key to ensure that the detectors and electronic components used in the CERN experiments and accelerators can withstand the high amount of radiation produced during particle collisions. To comply with this requirement, scientists perform radiation testing experiments, which consist in exposing these components to high levels of particle radiation to simulate the real operational conditions. The CERN Proton Irradiation Facility (IRRAD) is a well-established reference facility for conducting such experiments. Over the years, the IRRAD facility has developed a dedicated software infrastructure to support the control and monitoring systems used to manage these experiments, as well as to handle other important aspects such as dosimetry, spectrometry, and material traceability. In this paper, new developments and upgrades to the IRRAD software infrastructure are presented. These advances are crucial to ensure that the facility remains up-to-date and able to cope with the increasing (and always more complex) user needs. These software upgrades (some of them carried out within the EU-funded project AIDAinnova and EURO-LABS) will help to improve the efficiency and accuracy of the experiments performed at IRRAD and enhance the capabilities of this facility.
 
poster icon Poster TUPDP093 [2.888 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP093  
About • Received ※ 05 October 2023 — Revised ※ 21 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 10 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP095 Design of the Control System for the CERN PSB RF System 772
 
  • D. Landré, Y. Brischetto, M. Haase, M. Niccolini
    CERN, Meyrin, Switzerland
 
  The RF system of the CERN PS Booster (PSB) has been renovated to allow the extraction energy increase and the higher beam intensities required by the LHC Injectors Upgrade (LIU) project. It relies on accelerating cells installed in three straight sections of each of the four accelerating rings of PSB. Each cell is powered by one solid-state RF amplifier. This modularity is also embedded in its controls architecture, which is based on PLCs, several FESA (Front-End Software Architecture) classes, and specialized graphical user interfaces for both operation and expert use. The control system was commissioned during the Long Shutdown 2 (LS2) and allows for the nominal operation of the machine. This paper describes the design and implementation of the control system, as well as the system performance and achieved results.  
poster icon Poster TUPDP095 [0.857 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP095  
About • Received ※ 19 September 2023 — Revised ※ 03 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP101 A Modular Approach for Accelerator Controls Components Deployment for High Power Pulsed Systems 788
 
  • S. Pavis, R.A. Barlow, C. Boucly, E. Carlier, C. Chanavat, C.A. Lolliot, N. Magnin, P. Van Trappen
    CERN, Meyrin, Switzerland
  • N. Voumard
    European Organization for Nuclear Research (CERN), Geneva, Switzerland
 
  As part of the LHC Injector Upgrade (LIU) project, the controls of the PSB and PS injection kickers at CERN have been upgraded during Long Shutdown 2 (LS2) from heterogeneous home-made electronic solutions to a modular and open architecture. Despite both kickers have significantly different functionalities, topologies and operational requirements, standardized hardware and software control blocks have been used for both systems. The new control architecture is built around a set of sub-systems, each one with a specific generic function required for the control of fast pulsed systems such as equipment and personnel safety, slow control and protection, high precision fast timing system, fast interlocking and protection, pulsed signal acquisition and analysis. Each sub-system comprises a combined integration of hardware components and associated low level software. This paper presents the functionality of the different sub-systems, illustrates how they have been integrated for the two different use-cases, discusses the lessons learned from these first implementations and identifies possible evolution in view of deployment in other installations during Long Shutdown 3 (LS3).  
poster icon Poster TUPDP101 [0.842 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP101  
About • Received ※ 06 October 2023 — Revised ※ 21 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 06 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP105 The SLS 2.0 Beamline Control System Upgrade Strategy 807
 
  • T. Celcer, X. Yao, E. Zimoch
    PSI, Villigen PSI, Switzerland
 
  After more than 20 years of successful operation the SLS facility will undergo a major upgrade, replacing the entire storage ring, which will result in a significantly improved beam emittance and brightness. In order to make use of improved beam characteristics, beamline upgrades will also play a crucial part in the SLS 2.0 project. However, offering our users an optimal beamtime experience will strongly depend on our ability to leverage the beamline control and data acquisition tools to a new level. Therefore, it is necessary to upgrade and modernize the majority of our current control system stack. This article provides an overview of the planned beamline control system upgrade from the technical as well as project management perspective. A portfolio of selected technical solutions for the main control system building blocks will be discussed. Currently, the controls HW in SLS is based on the VME platform, running the VxWorks operating system. Digital/analog I/O, a variety of motion solutions, scalers, high voltage power supplies, and timing and event system are all provided using this platform. A sensible migration strategy is being developed for each individual system, along with the overall strategy to deliver a modern high-level experiment orchestration environment. The article also focuses on the challenges of the phased upgrade, coupled with the unavoidable coexistence with existing VME-based legacy systems due to time, budget, and resource constraints.  
poster icon Poster TUPDP105 [4.148 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP105  
About • Received ※ 04 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP108 Progress of the EPICS Transition at the Isis Accelerators 817
 
  • I.D. Finch, B.R. Aljamal, K.R.L. Baker, R. Brodie, J.-L. Fernández-Hernando, G.D. Howells, M.F. Leputa, S.A. Medley, M. Romanovschi
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • A. Kurup
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  The ISIS Neutron and Muon Source accelerators have been controlled using Vsystem running on OpenVMS / Itaniums, while beamlines and instruments are controlled using EPICS. We outline the work in migrating accelerator controls to EPICS using the PVAccess protocol with a mixture of conventional EPICS IOCs and custom Python-based IOCs primarily deployed in containers on Linux servers. The challenges in maintaining operations with two control systems running in parallel are discussed, including work in migrating data archives and maintaining their continuity. Semi-automated conversion of the existing Vsystem HMIs to EPICS and the creation of new EPICS control screens required by the Target Station 1 upgrade are reported. The existing organisation of our controls network and the constraints this imposes on remote access via EPICS and the solution implemented are described. The successful deployment of an end-to-end EPICS system to control the post-upgrade Target Station 1 PLCs at ISIS is discussed as a highlight of the migration.  
poster icon Poster TUPDP108 [0.510 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP108  
About • Received ※ 02 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 17 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP120 How Embracing a Common Tech Stack Can Improve the Legacy Software Migration Experience 860
 
  • C.D. Burgoyne, C.R. Albiston, R.G. Beeler, M. Fedorov, J.J. Mello, E.R. Pernice, M. Shor
    LLNL, Livermore, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Over the last several years, the National Ignition Facility (NIF), the world’s largest and most energetic laser, has regularly conducted approximately 400 shots per year. Each experiment is defined by up to 48 unique pulse shapes, with each pulse shape potentially having thousands of configurable data points. The importance of accurately representing small changes in pulse shape, illustrated by the historic ignition experiment in December 2022, highlights the necessity for pulse designers at NIF to have access to robust, easy to use, and accurate design software that can integrate with the existing and future ecosystem of software at NIF. To develop and maintain this type of complex software, the Shot Data Systems (SDS) group has recently embraced leveraging a common set of recommended technologies and frameworks for software development across their suite of applications. This paper will detail SDS’s experience migrating an existing legacy Java Swing-based pulse shape editor into a modern web application leveraging technologies recommended by the common tech stack, including Spring Boot, TypeScript, React and Docker with Kubernetes, as well as discuss how embracing a common set of technologies influenced the migration path, improved the developer experience, and how it will benefit the extensibility and maintainability of the application for years to come.
LLNL Release Number: LLNL-ABS-848203
 
poster icon Poster TUPDP120 [0.611 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP120  
About • Received ※ 27 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO02 In the Midst of Fusion Ignition: A Look at the State of the National Ignition Facility Control and Information Systems 973
 
  • M. Fedorov, A.I. Barnes, L. Beaulac, A.D. Casey, J.R. Castro Morales, J. Dixon, C.M. Estes, M.S. Flegel, V.K. Gopalan, S. Heerey, R. Lacuata, V.J. Miller Kamm, B.P. Patel, M. Paul, N.I. Spafford, J.L. Vaher
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The National Ignition Facility (NIF) is the world’s largest and most energetic 192-laser-beam system which conducts experiments in High Energy Density (HED) physics and Inertial Confinement Fusion (ICF). In December 2022, the NIF achieved a scientific breakthrough when, for the first time ever, the ICF ignition occurred under laboratory conditions. The key to the NIF’s experimental prowess and versatility is not only its power but also its precise control. The NIF controls and data systems place the experimenter in full command of the laser and target diagnostics capabilities. The recently upgraded Master Oscillator Room (MOR) system precisely shapes NIF laser pulses in the temporal, spatial, and spectral domains. Apart from the primary 10-meter spherical target chamber, the NIF laser beams can now be directed towards two more experimental stations to study laser interactions with optics and large full beam targets. The NIF’s wide range of target diagnostics continues to expand with new tools to probe and capture complex plasma phenomena using x-rays, gamma-rays, neutrons, and accelerated protons. While the increasing neutron yields mark the NIF’s steady progress towards exciting experimental regimes, they also require new mitigations for radiation damage in control and diagnostic electronics. With many NIF components approaching 20 years of age, a Sustainment Plan is now underway to modernize NIF, including controls and information systems, to assure NIF operations through 2040.
LLNL Release Number: LLNL-ABS-847574
 
slides icon Slides WE2BCO02 [4.213 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO02  
About • Received ※ 02 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO03 Ongoing Improvements to the Instrumentation and Control System at LANSCE 979
 
  • M. Pieck, C.D. Hatch, H.A. Watkins, E.E. Westbrook
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work was supported by the U.S. DOE through the Los Alamos National Laboratory (LANL). LANL is operated by Triad National Security, LLC, for the NNSA of U.S. DOE - Contract No. 89233218CNA000001
Recent upgrades to the Instrumentation and Control System at Los Alamos Neutron Science Center (LANSCE) have significantly improved its maintainability and performance. These changes were the first strategic steps towards a larger vision to standardize the hardware form factors and software methodologies. Upgrade efforts are being prioritized though a risk-based approach and funded at various levels. With a major recapitalization project finished in 2022 and modernization project scheduled to start possibly in 2025, current efforts focus on the continuation of upgrade efforts that started in the former and will be finished in the later time frame. Planning and executing these upgrades are challenging considering that some of the changes are architectural in nature, however, the functionality needs to be preserved while taking advantage of technology progressions. This is compounded by the fact that those upgrades can only be implemented during the annual 4-month outage. This paper will provide an overview of our vision, strategy, challenges, recent accomplishments, as well as future planned activities to transform our 50-year-old control system into a modern state-of-the-art design.
LA-UR-23-24389
 
slides icon Slides WE2BCO03 [9.626 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO03  
About • Received ※ 30 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 19 November 2023 — Issued ※ 03 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO04 Maintaining a Hybrid Control System at ISIS with a Vsystem/EPICS Bridge 986
 
  • K.R.L. Baker, I.D. Finch, M. Romanovschi
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The migration of the controls system for the ISIS accelerator from Vsystem to EPICS presents a significant challenge and risk to day-to-day operations. To minimise this impact throughout the transition, a software bridge between the two control systems has been developed that allows the phased porting of HMIs and hardware. The hybrid Vsystem and EPICS system also allows the continued use of existing feedback control applications that now require interaction between both control systems, for example the halo steering operation in Target Station 1. This work describes the implementation of this bridge, referred to as PVEcho, for the mapping of Vsystem channels to EPICS PVs and vice versa. The position within the wider ISIS controls software stack is outlined as well as how it utilises Python libraries for EPICS. Finally, we will discuss the software development practices applied that have allowed the bridge to run reliably for months at a time.  
slides icon Slides WE2BCO04 [2.757 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO04  
About • Received ※ 05 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 11 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO05 Continuous Modernization of Control Systems for Research Facilities 993
 
  • K. Vodopivec, K.S. White
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by the U.S. Department of Energy under contract DE-AC0500OR22725.
The Spallation Neutron Source at Oak Ridge National Laboratory has been in operation since 2006. In order to achieve high operating reliability and availability as mandated by the sponsor, all systems participating in the production of neutrons need to be maintained to the highest achievable standard. This includes SNS integrated control system, comprising of specialized hardware and software, as well as computing and networking infrastructure. While machine upgrades are extending the control system with new and modern components, the established part of control system requires continuous modernization efforts due to hardware obsolescence, limited lifetime of electronic components, and software updates that can break backwards compatibility. This article discusses challenges of sustaining control system operations through decades of facility lifecycle, and presents a methodology used at SNS for continuous control system improvements that was developed by analyzing operational data and experience.
 
slides icon Slides WE2BCO05 [1.484 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO05  
About • Received ※ 05 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO06 EPICS Deployment at Fermilab 997
 
  • P.M. Hanlet, J.S. Diamond, M. Gonzalez, K.S. Martin
    Fermilab, Batavia, Illinois, USA
 
  Fermilab has traditionally not been an EPICS house, as such expertise in EPICS is limited and scattered. However, PIP-II will be using EPICS for its control system. Furthermore, when PIP-II is operating, it must to interface with the existing, though modernized (see ACORN) legacy control system. We have developed and deployed a software pipeline that addresses these needs and presents to developers a tested and robust software framework, including template IOCs from which new developers can quickly gain experience. In this presentation, we will discuss the motivation for this work, the implementation of a continuous integration/continuous deployment pipeline, testing, template IOCs, and the deployment of user applications. We will also discuss how this is used with the current PIP-II teststand and lessons learned.  
slides icon Slides WE2BCO06 [2.860 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO06  
About • Received ※ 06 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO07 15 Years of ALICE DCS 1002
 
  • P.Ch. Chochula, A. Augustinus, P.M. Bond, A.N. Kurepin, M. Lechman, D. Voscek
    CERN, Meyrin, Switzerland
  • O. Pinazza
    INFN-Bologna, Bologna, Italy
 
  The ALICE experiment studies ultra relativistic heavy ion collisions at the Large Hadron Collider at CERN. Its Detector Control System (DCS) has been ensuring the experiment safety and stability of data collection since 2008. A small central team at CERN coordinated the developments with collaborating institutes and defined the operational principles and tools. Although the basic architecture of the system remains valid, it has had to adapt to the changes and evolution of its components. The introduction of new detectors into ALICE has required the redesign of several parts of the system, especially the front-end electronics control, which triggered new developments. Now, the DCS enters the domain of data acquisition, and the controls data is interleaved with the physics data stream, sharing the same optical links. The processing of conditions data has moved from batch collection at the end of data-taking to constant streaming. The growing complexity of the system has led to a big focus on the operator environment, with efforts to minimize the risk of human errors. This presentation describes the evolution of the ALICE control system over the past 15 years and highlights the significant improvements made to its architecture. We discuss how the challenges of integrating components developed in tens of institutes worldwide have been mastered in ALICE.
This proposed contribution is complemented by poster submitted by Ombretta Pinazza who will explain the user interfaces deployed in ALICE.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO07  
About • Received ※ 06 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 21 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THSDSC01 Sector Focused Cyclotron Power Supply Control System Upgrade 1578
 
  • X.J. Liu, S. An, Y. Chen, L. Ge, M. Li, J.Q. Wu, W. Zhang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  The old power supply control system of SFC (Sector Focused Cyclotron) has been in operation for more than a decade. Control system architecture is centralized, and equipment failure rate is getting higher and higher. The new control system uses the EPICS architecture, and the hardware uses Advantech’s APAX modules. The IOC runs on the APAX host and interacts with the module through API functions. The system has been running very stable for several months without failure.  
slides icon Slides THSDSC01 [0.510 MB]  
poster icon Poster THSDSC01 [2.136 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THSDSC01  
About • Received ※ 30 September 2023 — Revised ※ 11 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)