Technical Design Concept and First Steps in the Development of the New Accelerator Control System for PETRAIV

R. Bacher, J. Behrens, T. Delfs, T. Tempel, J. Wilgen, T. Wilksen Deutsches Elektronen-Synchrotron DESY, Germany

DESY.

PETRA III

- 2300-metre-long storage ring feeding 24 user beamlines
- Operated either in brightness mode (480 equally distributed bunches, 120 mA stored beam) or in timing mode (40 equally distributed bunches, 100 mA stored beam)
- Research groups from all over the world use the particularly brilliant, intense
- High-resolution 3D X-ray microscope for chemical and physical processes
- Will extend the X-ray view to all length scales, from the atom to millimetres
- Offers outstanding possibilities and optimal experimental conditions for industry

PETRA IV

- Will replace PETRA III, but keeping the existing experimental halls
- An additional experimental hall will provide space for additional 18 user beamlines

X-ray light for a variety of experiments - from medical to materials research

CLI Tools

DOOCS Application Interfaces

Feedback

PLC

Device

Server

DOOCS Data Acquisition

Shared

Memory

DOOC

Device Servers (VME, µTCA)

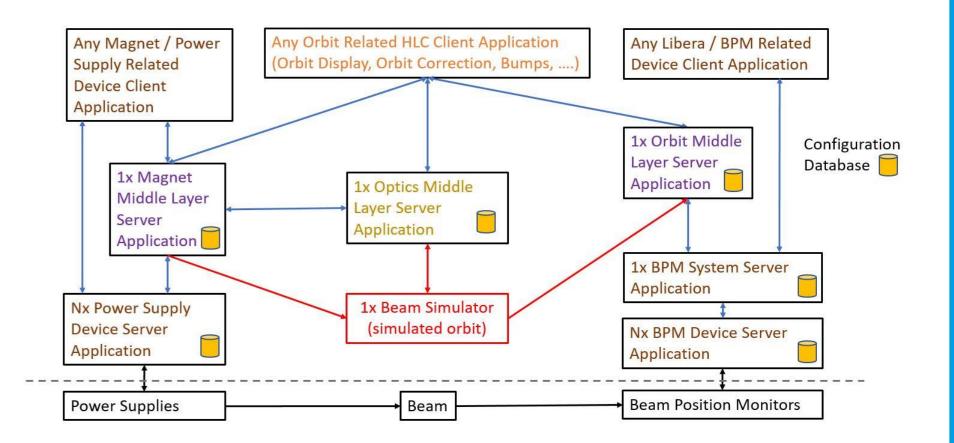
Three-layer architecture of the Distributed

Object-Oriented Control System (DOOCS)

Scientific Tools

eedbac

Servers


Timing

System Server New booster synchrotron DESY IV

Control System Framework

- Distributed Object-Oriented Control System (DOOCS)
 - Architecture: Three-layer, distributed client-server
 - Transportation layer: Industrial RPC protocol, ZeroMQ (being implemented)
 - Implementation:
 - Server: C++
 - Client: C++, Java, Python, MATLAB
 - Device interface: Variety of fieldbus and hardware interfaces
 - Integrated data acquisition service (DOOCS DAQ)
 - Interoperability: Client API provides access to
 - EPICS (facility control system at DESY)
 - TANGO (beamline control system at PETRA)
 - Development and Simulation Environment (Virtual PETRA)

(Virtual)PETRAIV (Magnets / Power Supplies, HLC, Liberas / BPMs)

Real PETRA ↔ Virtual PETRA (Example: Orbit control)

Graphical User

User Interface Lay

(Client Tier)

iddle Laye

ervice Tie

Resource Lay

Front End Tie

Timing & Synchronization

Application

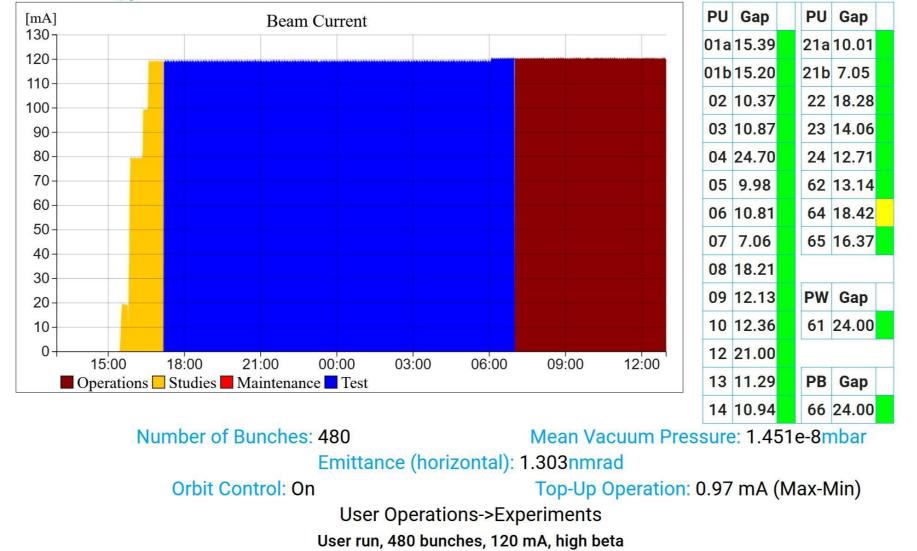
Servers

DOOCS Device Servers

Network

Network

Applications


• Java DOOCS Data Display (JDDD):

Petra		Last update: 22/09/2022, 12:58:32
Energy: 6.083GeV	Lifetime: 10.04h	Current: 120.04mA

Device Interfaces

Interfaces for triggered, high-performance

- Tool of choice for the standard beam operation as well as operating technical accelerator devices and systems
- Thin-client approach with a functional and rich set of widgets
- Python and MATLAB:
 - Tool of choice for rapid prototyping and visualization of scientific procedures and data
- Progressive Web Apps (PWA):
 - Tool of choice for dashboard-like applications
 - Based on React JavaScript framework

PETRAIII operational overview implemented as Progressive Web App using React framework

applications:

- Compliant with MicroTCA.4 technology
- Linux
- Remotely manageable
- Specific modules, e.g. Timing, ADC, Digital I/O processing
- Interfaces for conventional slow-control applications:
 - Compliant with industrial process control standards
 - Generic bridge server available for, e.g.:
 - OPC UA servers
 - Beckhoff controller
 - PLC

Acquisition and Archiving of Operational Data

- Data:
 - Time series data:
 - Number of devices: ~ 10.000
 - Acquisition rate / duration of storage:
 - Typically: 10 Hz / unlimited, max. 100 Hz / limited
 - In rare cases: 10kHz (→ DOOCS DAQ)
 Snapshot data: Event triggered

Management of Configuration Data

- Configuration data:
 - Include:
 - Hardware-related data: e.g. calibration constants
 - Software-related data: e.g. control system addresses
 - Not include:
 - State-dependent operational setpoint data (→ Save&Restore tool)
 Different versions of software applications (→ GitLab)

- Database:
 - Timescale (extension of PostgreSQL)
 - Mature, robust technology
 - Variety of data types (including arrays)
 - Good scaling behaviour
 - Can be operated as a distributed cluster
 - Large number of specific processing functions
 - Ongoing prototype development (performance exploration, data pipeline, data reduction strategies, local data buffering)

Deutsches Elektronen-Synchrotron DESY A Research Centre of the Helmholtz Association

- Change management:
 - Formalized change workflow
 - Through control system (but monitored against references)
- Database:
 - Relational
 - Ongoing prototype development (table structure, change history, unique identifier / temporal validity scheme)