
HOW EMBRACING A COMMON TECH STACK CAN IMPROVE THE
LEGACY SOFTWARE MIGRATION EXPERIENCE

C. D. Burgoyne, C. R. Albiston, R. G. Beeler, M. Fedorov, J. J. Mello, E. R. Pernice, M. Shor
Lawrence Livermore National Laboratory, Livermore, USA

Abstract
Over the last several years, the National Ignition Facility

(NIF), the world’s largest and most energetic laser, has reg-
ularly conducted approximately 400 shots per year. Each
experiment is defined by up to 48 unique pulse shapes, with
each pulse shape potentially having thousands of configu-
rable data points. The importance of accurately represent-
ing small changes in pulse shape, illustrated by the historic
ignition experiment in December 2022, highlights the ne-
cessity for pulse designers at NIF to have access to robust,
easy to use, and accurate design software that can integrate
with the existing and future ecosystem of software at NIF.
To develop and maintain this type of complex software, the
Shot Data Systems (SDS) group has recently embraced
leveraging a common set of recommended technologies
and frameworks for software development across their
suite of applications. This paper will detail SDS’s experi-
ence migrating an existing legacy Java Swing-based pulse
shape editor into a modern web application leveraging
technologies recommended by the common tech stack, in-
cluding Spring Boot, TypeScript, React and Docker with
Kubernetes, as well as discuss how embracing a common
set of technologies influenced the migration path, im-
proved the developer experience, and how it will benefit
the extensibility and maintainability of the application for
years to come.

INTRODUCTION
On December 5, 2022, the National Ignition Facility

(NIF), the world’s largest and most energetic laser, made
history by achieving ignition in a laboratory setting for the
first time [1]. This milestone was made possible in part by
various software applications which are instrumental in the
NIF’s ability to regularly and efficiently conduct up to 400
experiments per year. Given the speed of technological in-
novations in software, and with NIF now in its second dec-
ade of operations, several of these software systems require
various upgrades or rewrites.

Recently, a team within the Shot Data Systems (SDS)
group worked on rewriting one of these legacy tools, a Java
Swing based desktop application called Pulse Shape Editor
(PSE), to a new single-page, modern, web-application
known as Pulse Shape Tool (PST). This application, whose
purpose is to create and define the laser pulses used on NIF,
is instrumental in the shot process, empowering pulse de-
signers to configure potentially thousands of individual
pulse points per experiment. The importance of PST func-
tioning efficiently and accurately was illustrated by the
successful December 2022 shot, where small adjustments
to the energy and timing of laser pulses, achieved in part

through manipulation of pulse point and spline point data
in PST, played a role in reaching ignition [2].

With limited resources and many disparate applications
to develop and maintain, when choosing a migration path
for PST it was critical for SDS developers to choose a set
of technologies, also known as a technology stack or tech
stack, that was modern yet leveraged the knowledge al-
ready available within the team. With so many existing
technologies available, and more becoming available
nearly every day, choosing an ideal tech stack for a given
application and development team can be challenging and
time-consuming. Ultimately, it was chosen to develop PST
using a tech stack that was already being utilized among a
subset of other SDS applications, resulting in benefits such
as the ability to leverage existing developer knowledge of
technologies that were also well-supported by the devel-
oper community at large.

REQUIREMENTS
The original PSE was designed as a stand-alone Java

Swing application (Fig. 1). Users would download PSE
onto their desktops prior to use, yet running the application
still required an Internet connection to use all the features
due to reliance on a remote database connection for storing
and retrieving pulse data. Besides using outdated technol-
ogy containing vulnerabilities, many of PSE’s limitations
were due to architectural decisions made by the original
developers. For example, since PSE was a desktop appli-
cation, it was difficult to extend it to dynamically integrate
with other applications in real-time, a feature increasingly
expected in modern applications. Furthermore, these same
architectural decisions made it difficult to maintain in gen-
eral. After thorough examination of the PSE code, it was
decided performing an in-place upgrade would not provide
enough added value and would be needlessly difficult and
time consuming to complete. Instead, the decision was
made to migrate the functionality to a new application.

Key functionalities in PSE included the ability to edit,
save and plot pulse and spline points, simple data valida-
tion, and the ability to import and export pulse data to and
from external files and the database. Users required these
key functionalities preserved in the migration to PST. Us-
ers also requested additional modern features be integrated
into the new application such as the ability for users to
modify and plot multiple pulses simultaneously, support
for multiple users editing the same pulses concurrently,
complex data integrity checks, per pulse permission man-
agement, and complex integrations with other applications,
all while ensuring the software remained easy for develop-
ers to maintain and extend as required. These requirements

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP120

TUPDP120

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

860

General

Control System Upgrades

were to be implemented as a single-page web-application,
in-line with many of SDS’s other modernized applications.

Figure 1: Legacy Pulse Shape Editor (PSE) application.

CHOOSING A TECHNOLOGY STACK
Given the current state of the development tools and

technology ecosystem, the requirements for PST could
have potentially been implemented in a nearly infinite
number of ways. Even given the limitation that PST must
be a web application, one is not short on choices for imple-
mentation of the web GUI. For example, there are many
popular web frameworks alone, three of which include Re-
act, Angular and Vue.js. All three of these frameworks can
be used to create modern, high-quality, single page web ap-
plications, and all are well used and supported, having tens
to hundreds of millions of downloads per year as seen in
Fig. 2. When also taking into consideration the choices
necessary for web components such as complex tables,
server frameworks, and databases, it quickly becomes clear
that a strategy for finalizing choices is necessary.

Figure 2: Chart showing npm download trends for three
popular web frameworks, React, Angular, and Vue, illus-
trating how each has millions of downloads per year [3].

A Strategy for Navigating Numerous Choices
One strategy for navigating the ever-expanding ecosys-

tem of programming languages, frameworks, libraries, and
other technologies available for application development
are the idea of endorsed tech stacks, which may also be
known as recommended tech stacks or common tech
stacks. This concept can mean different things to different
groups, but in general, endorsed tech stacks aim to give de-
velopers a guarantee that their technology choices will be
supported by the team or organization and that the team or
organization has a pool of developer resources with at least
some level of knowledge of the technologies in the stack.
Some large companies, such as Meta, already put some
form of this idea into practice [4]. Some of the goals of an
organization adopting an endorsed tech stack may be to
save developer bandwidth when beginning development
on a new application by eliminating some of the research
and guesswork out of the starting point, to improve main-
tainability with more predictable code that more develop-
ers in the organization can quickly jump into, or to simply
improve the developer experience. For groups adopting
recommended tech stacks, an important consideration is
that the suggested tech stacks should not be too prescrip-
tive, but more-so act as a starting point. There will be times
when specific requirements may not fit the recommended
technologies. In these cases, there should be a process for
developers to make changes based on their discretion to
develop the best product and meet mission objectives.

Applying Technology Stack Strategy to PST
When development of PST began in 2020, SDS had re-

cently decided to leverage the concept of recommended
tech stacks for future applications and modernization pro-
jects. Tech stack endorsements were based on the recom-
mendations of an internal architectural review board. The
initial tech stacks were devised by the board based on mod-
ern technologies that had already been successfully used
across several applications in SDS. A non-exhaustive list
of examples of initial endorsed options included (all op-
tions additionally involved using containers with Docker
on Kubernetes):
 Spring Boot Application Stack: Java with Spring Boot

and Oracle database
 Node Application Stack: NodeJS with TypeScript and

NestJS using Oracle database
 Java Tomcat Stack: Java, Spring, and Oracle database
 Web Client Stack: TypeScript, React or Angular, and

an appropriate Kendo component library
The specific stack chosen for the PSE to PST migration

project was ultimately chosen based on past developer ex-
perience and familiarity with the suggested technologies.
For the backend, developers chose the Spring Boot Appli-
cation Stack, leveraging Java 11+ on Spring Boot 5.2 with
an Oracle database. For the Web Client Stack, or frontend
stack, developers chose to use React 16 with Typescript
and KendoReact as a component provider, mainly for
grids. As suggested, both the front and backend would

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP120

General

Control System Upgrades

TUPDP120

861

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

utilize containerization on Docker with Kubernetes for or-
chestration.

MODIFYING THE TECHNOLOGY
STACK

Although most of the recommendations from the en-
dorsed tech stack were used for PST without modifications,
a couple adjustments were made when it came to providers
for pre-build React components.

Switching KendoReact for AG Grid React
KendoReact (Kendo) [5] was the initial solution recom-

mended for grids by the tech stack. Kendo, created by Pro-
gress Telerik, is a commercial JavaScript library that pro-
vides a wide variety of UI components for use in React-
based applications. Being a commercial library, it requires
a license to create production-ready applications. The pri-
mary Kendo component that was planned for use in PST
was the react-data-grid, a performant and customizable
component for displaying small or large sets of data in a
tabular format [6]. This component would have been used
throughout the application to render tables containing data
such as pulse points, spline points and data integrity sum-
maries. However, based on experience with other SDS ap-
plications using Kendo, PST developers had concerns. Pri-
marily, the desired customizations typical for SDS applica-
tions, customizations that would once again be required for
PST, were difficult with this technology. This led develop-
ers to explore other data grids to determine if another solu-
tion may fit the specific needs of PST more appropriately.

Two other options, PrimeReact [7] and AG Grid React
(AG Grid) [8] were examined. Like Kendo, PrimeReact is
a set of customizable, open-source UI components for Re-
act created by PrimeTek. However, unlike Kendo, Pri-
meReact does not require a commercial license to develop
or deploy an application to production. On the other hand,
AG Grid is not a component library as the other options,
but a customizable, stand-alone, high-performance grid.
AG Grid has a free community edition that fits many use
cases; however, it also offers an enterprise version with ad-
vanced features. In short, while Kendo and PrimeReact are
libraries of components containing a grid component, AG
Grid is a stand-alone, specialized, fully featured grid com-
ponent.

After prototyping all three options, developers ulti-
mately decided that AG Grid would be the best option not
only due to the its widespread use (Fig. 3), excellent offi-
cial documentation, and ease of necessary customizations,
but because through prototyping, it was discovered that AG
Grid had most of the features necessary for implementation
of PST requirements built-in and would therefore require
minimal additional customization versus the competing
packages that had been evaluated.

Figure 3: Chart showing npm downloads of PrimeReact,
AG Grid, and Kendo’s grid component, illustrating relative
popularity of AG Grid compared to others [9].

Addition of ReCharts
One of the key requirements for PST was the ability to

plot pulse points in real-time. Without the use of Kendo or
any other component library for React, a charting library
was required to be added to the tech stack. When choosing
a charting package, as with the grid package selection pro-
cess, the PST developers desired a solution that enjoyed
widespread adoption, had excellent official documentation,
required minimal customization, and was easy to custom-
ize where necessary.

Several popular React charting libraries were evaluated.
These included recharts [10], a composable charting li-
brary for React built on D3.js; react-chartjs-2 [11], a React
wrapper of the JavaScript-based Chart.js library; nivo [12],
a set of data visualization components for React based on
D3.js; and victory [13], a set of modular charting and vis-
ualization components for React. Ultimately, after an initial
research period, prototypes were created using both re-
charts and nivo. After prototyping, it was decided that re-
charts best suited the needs of PST due to its relatively
larger number of users (Fig. 4), the minimal customization
required, and ease of necessary customizations.

Figure 4: Chart showing npm downloads of recharts, react-
chartsjs-2, @nivo/core (nivo), and victory, illustrating rel-
ative popularity of Recharts compared to others [14].

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP120

TUPDP120

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

862

General

Control System Upgrades

LESSONS LEARNED
The bootstrapping, development and subsequent mainte-

nance periods for PST have been an overall positive expe-
rience. Making use of a tech stack that shared many aspects
with other applications in the SDS software library allowed
for efficient bootstrapping and development periods with
the project beginning in late 2020 and being delivered to
users by early 2022 (Fig. 5). Thus far, PST has enjoyed a
relatively low effort maintenance period with few bugs
compared to what developers had experienced in past ap-
plications. However, even though there were plenty of ben-
efits with using this approach, there are still some potential
drawbacks to consider before adopting a recommended or
endorsed tech stack for application development.

Figure 5: PSE was successfully migrated to PST, pictured
here, and delivered to users in early 2022.

Benefits
There are many benefits that may be enjoyed by a team

or organization from adopting recommended tech stacks.
Some potential benefits are outlined in the following.

Reduced project startup times Developers found
that the time to get the project up and running was greatly
reduced due to not requiring an extensive research and pro-
totyping period. Although this phase was in no way elimi-
nated entirely, the process was found to be more efficient
and allowed for more focus on the details, as an outline for
the big picture was already provided by the tech stack.

Simplified development of internal tools for future
use Adopting a recommended tech stack has allowed
SDS developers to create internal component libraries and
starter projects to further save future development time.
For example, while developing PST, developers were able
to create a front-end starter project, or seed project, that can
be cloned and modified as needed when bootstrapping fu-
ture projects.

Simple to create a common look-and-feel across var-
ious applications Having similar tech stacks, especially
on the front end, and the ability to have common code in
shared, downloadable packages, makes it trivial to set up a
new application with the same look and feel as others. This
provides users with a predictable, cohesive experience
across applications, improving the overall user experience.

Streamlined update process When using similar tech-
nologies and versions across projects, as with a common
tech stack, developers found that keeping projects up to
date can be simpler. For example, if a library has a breaking
change between versions, adapting to this change only
needs to be learned once and the knowledge can then be
repeatedly applied across all effected applications versus
needing to research and apply fixes for unrelated breaking
changes across a set of differing technologies.

Developer experience may be more enjoyable, result-
ing in more satisfied developers Developer experience
may be improved for several reasons. For example, if the
tech stack encourages the use of technologies with wide-
spread adoption, developers can spend less time research-
ing answers to development issues and spend more time
coding due to a large online user community. In addition,
developer’s flexibility is increased as they are empowered
to easily move between projects as they will already be fa-
miliar with the technologies used. This same familiarity
may also result in fewer bugs due to greater knowledge re-
sulting in a better experience for developers as well as
stakeholders.

Drawbacks
Although there are many benefits to using recommended

tech stacks, there are still potential pitfalls to consider. A
couple potential issues that may arise are outlined as fol-
lows.

Updating for breaking changes can be time consum-
ing Although a common tech stack can make maintain-
ing a set of projects easier, it can result in updates becom-
ing a more time-consuming process that affects many ap-
plications simultaneously.

Developers need to be proactive at research Use of
a recommended tech stack still requires research and
thought from developers. It is easy when pressed for time
to accept a tech stack at face value and make it work with
project requirements even if the tech stack is not ideal
which may result in a sub-par result. Instead, developers
still need to do research on technologies versus project re-
quirements and make adaptations and changes where nec-
essary to best meet mission objectives.

CURRENT STATUS AND FUTURE WORK
With the use of recommended tech stacks, the develop-

ment experience can be improved to include shorter project
bootstrapping times and a shorter development period
while maintaining high quality code, as was seen through
the migration process from PSE to PST. Currently into the
maintenance phase, the benefits of PST’s tech stack
choices are still evident with few bug reports and easy to
implement fixes. Developers have worked to consistently
keep PST technologies up to date and in-line with other ap-
plications in the SDS portfolio.

The development team for PST is currently in the pro-
cess of updating to React 18 and Java 17 (soon to be Java
21), an effort that is being performed in parallel to these
updates in several other SDS applications. Future plans in-
clude updating Spring Boot to the latest version and

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP120

General

Control System Upgrades

TUPDP120

863

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

updating authentication to use OAuth 2.0. As technologies
continue to update and release new versions, developers
will continue to update PST regularly to keep everything
up to date and reduce the chance of PST being exposed to
critical vulnerabilities in the future.

Currently, SDS is continuing to migrate additional leg-
acy applications either to new applications or using in-
place migrations as necessary. We are continuing to use the
idea of a recommended tech stack, taking advantage of
seed projects and internal component libraries to bootstrap
migrations, which has continued to produce a positive ex-
perience and quick turnaround time for developers and
stakeholders alike.

Beginning in fall of 2023, SDS established a revised ar-
chitectural review board. The review board will advise
other SDS developers on revised tech stack recommenda-
tions and their benefits, as well as inform and influence on
other up-to-date development best practices.

ACKNOWLEDGEMENT
This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. IM Re-
lease #LLNL-CONF-854378.

REFERENCES
[1] Celebrating the Milestone of Ignition,

https://www.llnl.gov/news/ignition
[2] Star Power: Blazing the path to fusion ignition,

https://www.llnl.gov/article/25706/star-
power-blazing-path-fusion-ignition

[3] npm-stat: Download statistics for packages react, vue, @an-
gular/core,
https://npm-stat.com/charts.html?package=re-
act&package=vue&package=%40angu-
lar%2Fcore&from=2019-01-01&to=2022-12-31

[4] Programming languages endorsed for server-side use at
Meta,
https://engineering.fb.com/2022/07/27/devel-
oper-tools/programming-languages-endorsed-
for-server-side-use-at-meta/

[5] KendoReact,
https://www.telerik.com/kendo-react-ui

[6] KendoReact: React Data Grid (Table),
https://www.telerik.com/kendo-react-ui/grid

[7] PrimeReact, https://primereact.org/
[8] AG Grid React Documentation,

https://www.ag-grid.com/react-data-grid/

[9] npm-stat: Download statistics for packages @progress/
kendo-react-grid, ag-grid-react, primereact,
https://npm-stat.com/charts.html?pack-
age=%40progress%2Fkendo-react-grid&pack-
age=ag-grid-react&package=pri-
mereact&from=2019-01-01&to=2022-12-31

[10] Recharts, https://recharts.org/en-US/
[11] react-chartjs-2, https://react-chartjs-2.js.org/
[12] nivo, https://nivo.rocks/
[13] Victory,

https://formidable.com/open-source/victory/
[14] npm-stat: Download statistics for packages recharts,

@nivo/core, react-chartjs-2, victory, https://npm-
stat.com/charts.html?package=recharts&pack-
age=%40nivo%2Fcore&package=react-chartjs-
2&package=victory&from=2019-01-01&to=2022-
12-31

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP120

TUPDP120

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

864

General

Control System Upgrades

