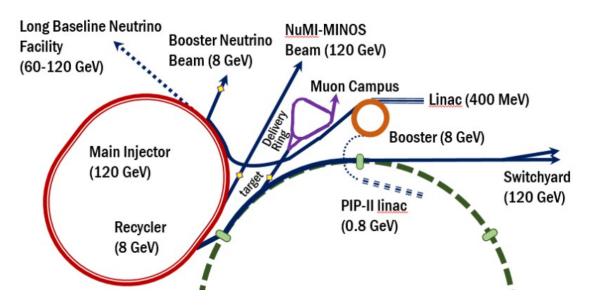


EPICS Deployment at Fermilab

Pierrick Hanlet ICALEPCS 2023

2023 October 11

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. A Partnership of: US/DOE India/DAE Italy/INFN UK/UKRI-STFC France/CEA, CNRS/IN2P3 Poland/WUST



Content

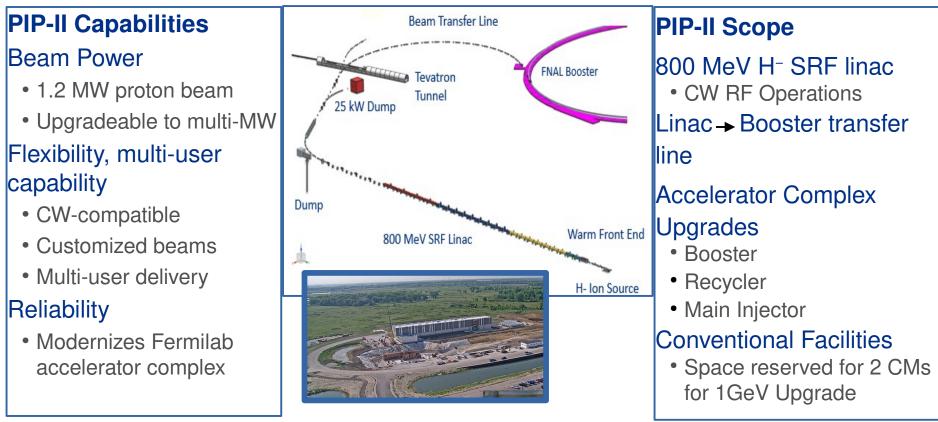
- Introduction
 - Fermilab accelerator complex
 - PIP-II see D. Nicklaus FR1BCO02
 - ACORN see D. Finstrom TUMBCMO20
- Motivation
- Goals for Deployment
- CI/CD Pipeline
- Registering, Starting and Monitoring IOCs
- EPICS Experience at PIP2IT
- Summary

Fermilab Accelerator Complex

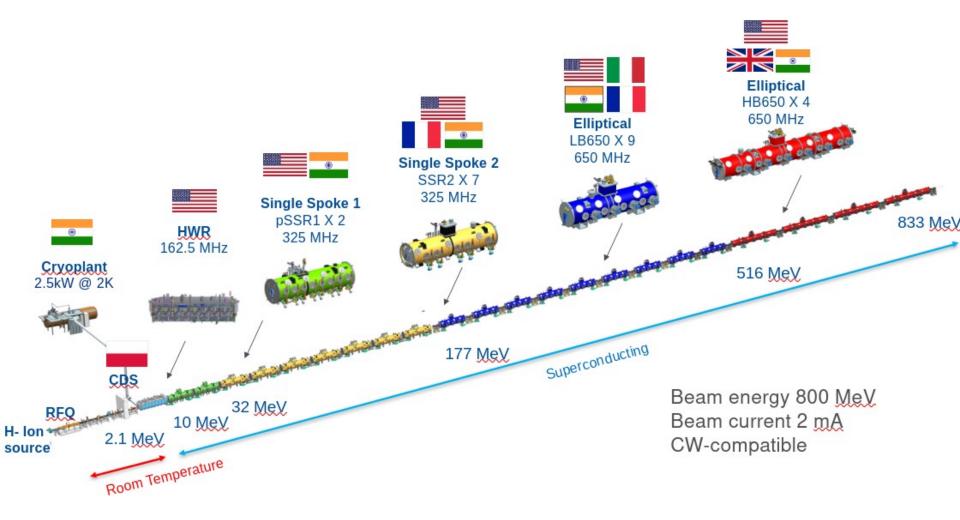
Series of accelerators Provides beam to several experiments

- LBNF, DUNE
- NuMI
- muon campus
- local neutrino experiments
- test beams

PIP-II will replace the existing LINAC


PIP-II is the first US/DOE accelerator to be built with significant international contributions/partnerships.

PIP-II Mission


PIP-II is an essential upgrade to Fermilab accelerator complex to enable the world's most intense beam of neutrinos to LBNF/DUNE, and a broad physics research program for decades to come.

The PIP-II scope enables the accelerator complex to reach 1.2 MW p-beam on LBNF target

PIP-II Superconducting LINAC

→ For more on PIP-II see D. Nicklaus FR1BCO02

5/19 2023-10-11

Pierrick Hanlet, Fermilab

Motivation

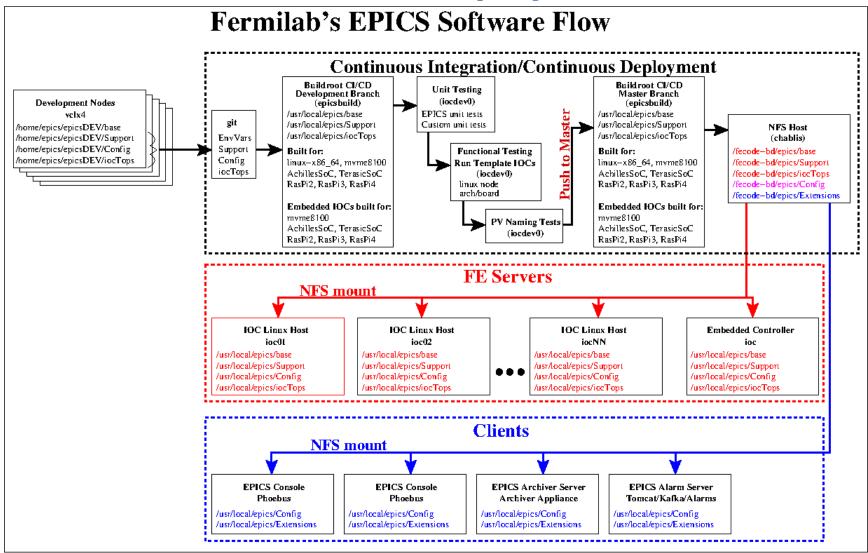
- Treating EPICS deployment as a green field to simplify deployment for non-experts
 - https://ghe-pip2.fnal.gov/epics-controls/
- Small controls team, therefore we require:
 - robust build of infrastructure
 - automated build procedures
 - extensive testing
 - minimal functionality to automate deployment/monitoring of IOCs
- Developed a standard EPICS infrastructure to simplify developing IOCs for new developers
 - "base" and "Support" software are built (on all supported platforms) and made available on controls network
 - developers start from template IOCs and build against production ./base and ./Support
 - template IOCs have minimal basic functionality required of all FNAL IOCs
- Standard deployment and automated build for
 - robustness
 - ease in maintaining and debugging software
- Implement modern computing practices Continuous Integration/Continuous Deployment (CI/CD)
- Using PVXS protocol and disabling Channel Access (CA)
 - pvaccess protocol
 - structured data
 - already has ipV6
 - where network security measures will be implemented
- In kind contributions or commercial IOCs with CA will be accessible via p4p gateways

Goals for Deployment

"Treating EPICS deployment as a green field to simplify deployment for non-experts"

- PIP-II and possibly new components from ACORN will not rely on old hardware: VME, CAMAC
- Current EPICS versions work, and expected to continue to work, with the new hardware
- Leverage this to build current versions EPICS software in Continuous Integration/Continuous Deployment (CI/CD) pipeline and make all of EPICS base and EPICS Support/Modules "standard"
- Boiler plate code is made available on the Controls network from NFS mount: */usr/local/epics/*
- EPICS IOCs built against this boiler plate code base in CI/CD pipeline

In future, when present hardware becomes "old" hardware, we will use containers to preserve the IOCs



CI/CD Pipeline: Supporting Multiple Platforms

- In addition to standardizing code, we are exploring standardizing platforms:
- EPICS base, Support, & iocTops are built for different architectures/platforms:
 - linux-x86_64, arm/Cyclone-V, arm/Arria-10, arm/ZCU106 Xilinx, arm/RasPi2, arm/RasPi3 arm/RasPi4
- Using Buildroot for raspberry pi builds and arm/Cyclone-V and arm/Arria-10
- Adding Yacto for Xilinx
- These produce kernels and root file systems for each platform
 - build process copies these to tftp area
 - required for network booting embedded nodes
- Also generates Toolchains or SDKs for cross compiling
- Toolchains/SDKs used to build EPICS code base
- CI/CD artifacts are deployed on NFS host and available on NFS mounts:
 - /usr/local/epics/base/bin/linux-x86_64
 - /usr/local/epics/base/bin/linux-arm_raspberrypi2
 - /usr/local/epics/base/bin/linux-arm_raspberrypi3
 - /usr/local/epics/base/bin/linux-arm_raspberrypi4
 - /usr/local/epics/base/bin/linux-arm_terasicsoc
 - /usr/local/epics/base/bin/linux-arm_achilles
 - /usr/local/epics/base/bin/linux-arm_zcu106
- Same for /usr/local/epics/base/lib, /usr/local/epics/Support/xxxMODULE/lib, etc

CI/CD – Software Path to Deployment

CI/CD Pipeline

- Implementation developed by Mariana González.
- Using Github for code management, documentation and issue tracking.
- Using Github Actions tool to automate building and testing
- Full CI/CD chain is complete and successfully tested
 - Code and documentation migrated Github
 - Automated build of the 3-tier EPICS for all supported architectures
 - Automated unit testing working for host architecture
 - Automated testing:
 - Unit tests
 - Basic functional tests (based on templateIOC tests)
 - Check for duplicate PV names
- Passing tests allows for code to be build, tagged, and pushed to NFS host
- IOC owner must register IOC before deploying
- Presently building base-7.0.7 on Alma Linux 9.2

CI/CD Pipeline: Template IOCs

Each Fermilab IOC running on the controls network will provide the following:

- heartbeat
- IOC statistics (CPU usage, memory usage, etc.)
- capability of 20 Hz scan rate
- use aSub (specific Support module) record for interfacing with IOC specific custom code (C/C++ libraries)
- access to Acnet (acnetPV wrapper)
- tcast interface to clock system
- reccaster Channel Finder

It is recommended to use the template in the following steps:

- build and run the IOC as is to test operability of your soft or embedded IOC
- once established, create IOC specific PVs, code, and link to IOC specific custom libraries

CI/CD Pipeline: IOC Production Deployment

We have 2 classes of deployment:

- Soft IOCs
 - all soft IOCs are hosted on linux servers
 - Alma Linux 9.2 presently
 - all code is based on CI/CD output, so no need for containers
 - launched via procServ on different TCP ports
 - procServ scripts launched from systemd
 - log files in **/scratch/epicsLogs**
- Embedded IOCs
 - Raspberry Pis, SoMs (Achilles SoC, TerasicSoC, Xilinx)
 - Raspberry Pi will be single process server
 - SD card or on board flash will have host specific network configuration
 - kernels, root file system, dtb files, etc. from tftp server for network boot
 - use u-boot
 - NFS mount /usr/local/epics
 - IOCs launched via procServ and launched from systemd
 - log files in **/scratch/epicsLogs** which is mounted from soft IOC server(s)

Services

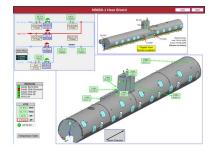
In addition to the infrastructure for IOCs, Fermilab is evaluating several EPICS services.

- The EPICS paradigm is (typically) to have all of the smarts built into the IOCs:
 - Calibrations
 - Sequences
 - Alarm limits and severity for each alarm
- Each service/user application has all information available to it without further processing
- Services include:
 - Consoles
 - Archiver
 - Alarm Handler
 - Channel Finder
 - Save & Restore
- These services have been installed and operated at PIP2IT

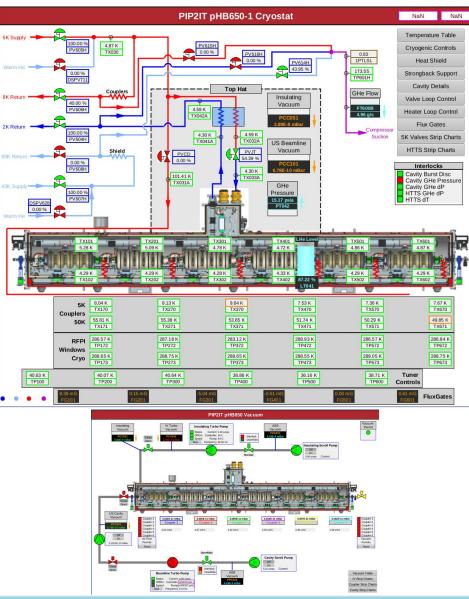
Services – Consoles

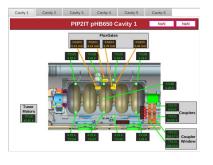
- Consoles refer to the operator visual screens (GUIs or HMIs) which will be used to monitor and control PIP-II apparatus
- Phoebus has been chosen as our principle platform (for now)
 - Based on Control System Studio (CSS), but rewritten without Eclipse backbone
 - Built in hooks for easy integration with different central services
 - Easy to use
 - Mature, flexible, and well documented
 - Drag and drop capability for developing GUIs
 - Can be used to launch physics applications and sequences

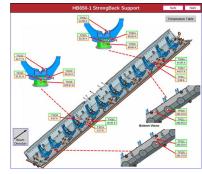
Services – Consoles

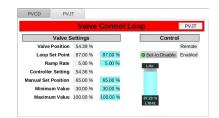

- Inspired by SLAC main HMI
- Status at a glance
- Launcher

										PIP	-II Super	Conducting	LINAC										<digital_clo< th=""><th>ck></th><th>ļ</th></digital_clo<>	ck>	ļ
ACCT			•							0															l
DCCT																								nst	I
Laser Profile	0	0			0		0		0		0		0			0			0			0		0	I
Wire Profile																								len	l
Length Monitor																								tation	l
Width Monitor																								S	l
BPM	0	•	•	•	•	0	•	0	•	0	0	•	0	0	0	0	0	0	0	•		•	•	•	
Vertical Dipole										•	0	•	•	•	•	•	•	•	•			•	•	● 8	
Horizontal Dipole										0	0	0	0	0	0	0	0	0	0	()	0	0	O m	l
Defocusing Quad										0	0	0	0	0	0	0	0	0	0	()	0	•	O	l
Focusing Quad										0	0	0	0	0	0	0	0	0	0	()	0	0	0	l
Skew Quad																								Vic	l
BL Vacuum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	()	0	0	es los	l
в																									l
	iiiia a	-	CHO.		B. Bath		ton in the			Miner M		here and	and the second	alle stal	-		and and	and the second		adman.	- minutes	an - minelana	a. ainda	in the second	I
arm Front End	VR SSR1	1 SSR1	2 55P2	ssr2-2	SSR2	2-3 SSR2	2-4 SSR2	5 SSR2	6 SSR2-7	LB65	10-1 LEG	50-2 LB650	3 LB65	10-4 LE6	50-5 LBG	LEA	650-7 LEG	50-8 LB	10-9	HB650-1				E - 10	l
State			12 SSH2																Celd	2KCc/d	HB650-2 2KGc1d	HB650-3	HB650-4 JKCc'd		l
Vacuum																									l
																				~	-			S	l
Cryogenics Safety RFPI																					-			CryoModules	l
RFPI																				-	-			Nod	l
			_ ~					i i													-			ule	l
MPS (•	-	-		-														-	•	•	•	S	ĺ
ini 5 🔾			•	•	0																				
MPS Magnets																				•		•			١


Services – Consoles







ΛΛΛ

16/19 2023-10-11

Pierrick Hanlet, Fermilab

PIP2IT Lessons Learned

- PIP2IT is the CM test stand
- First CM successfully tested June 2023
- Also test stand for EPICS IOCs and services
- First use of deployment of EPICS infrastructure
- IOC deployment worked well
- Big Lesson: cannot install & deploy services and forget them
 - Phoebus worked well, but slow when hosted from linux servers to windows
 - bizarre java errors
 - GUI updates
 - need proper configuration of Phoebus alarms, Archiver Appliance, Channel Finder, cannot simply install and ignore

Concluding Remarks

- EPICS is now well established at Fermilab and is here to stay
- Green field allows us to build with latest software versions
- Our CI/CD pipeline is fully functional
- Many tests still to write
- Network booting embedded systems and NFS mounted EPICS code (IOCs)
- Deploying several EPICS services (Consoles, Alarms, Archiver Appliance, Save & Restore, and Channel Finder)
- Services need as much (perhaps more) support than IOCs

PIP2IT – Lessons Learned

- At PIP2IT:
 - Phoebus is running on all consoles at Cryomodule Test Facility (CMTF)
 - LLRF is still using edm for HMIs will be transitioned to Phoebus
 - What we hope to learn:
 - remote access for production
 - performance capabilities
 - other (non-Phoebus) application platforms
 - consider dedicated linux servers one server/console
 - main control room integration
 - study authentication and authorization
 - testing other applications: archiver, alarms, channel finder, save & restore

