
REPLACING CORE COMPONENTS OF THE PROCESSING AND
PRESENTATION TIERS OF THE MEDAUSTRON CONTROL SYSTEM
A. Höller†*, S. Vörös‡*, A. Kerschbaum-Gruber, C. Maderböck, D. Gostinski, L. Adler,

M. Eichinger, M. Plöchl, EBG MedAustron GmbH, Wiener Neustadt, Austria

Abstract
MedAustron is a synchrotron-based ion therapy and re-

search facility in Austria, that has been successfully treat-
ing cancer patients since 2016. MedAustron acts as a man-
ufacturer of its own accelerator with a strong commitment
to continuous development and improvement for our cus-
tomers, our users and our patients. The control system
plays an integral role in this endeavour. The presented pro-
ject focuses on replacing the well-established WinCC OA
[1] SCADA system, enforcing separation of concerns
mainly using .NET and web technologies, along with many
upgrades of features and concepts where stakeholders had
identified opportunities for improvement during our years
of experience with the former control system setup for
commissioning, operation and maintenance, as well as im-
proving the user experience. Leveraging our newly devel-
oped control system API, we are currently working on an
add-on called "Commissioning Worker”. The concept fore-
sees the functionality for users to create Python scripts, up-
load them to the Commissioning Worker, and execute them
on demand or on a scheduled basis, making it easy and
highly time-efficient to execute tasks and integrate with al-
ready established Python frameworks for analysis and op-
timization. This contribution outlines the key changes and
provides examples of how the user experience has been im-
proved.

MEDAUSTRON
MedAustron is a synchrotron-based ion beam therapy

and research centre located in Austria. The facility has been
treating cancer patients since 2016, currently with the use
of protons and carbon ions. In parallel to medical and re-
search operation, MedAustron is also working on develop-
ment and improvement projects, like commissioning the
accelerator for use with a helium beam.
MedAustron acts as a manufacturer of not only its own par-
ticle therapy accelerator, but also of further ion beam cen-
tres.

In consequence of being a manufacturer of multiple fa-
cilities, MedAustron has taken the decision to exchange
some components of the MedAustron Control System
(MACS) and enhance it with components more suitable to
conform with the challenges of operating and further de-
veloping multiple facilities and the additional use case of
initial commissioning (component commissioning, accel-
erator commissioning, beam commissioning) of new facil-
ities.

MEDAUSTRON CONTROL SYSTEM
The MedAustron accelerator delivers proton and carbon

ion beams for cancer treatment and research to four irradi-
ation rooms including 3 horizontal, 1 vertical and a gantry
beam line. In order to deliver beam from the source to the
treatment room, the particle accelerator consists of:
 ~300 power converters controlling ~350 magnets
 ~270 vacuum devices
 ~80 beam diagnostics devices
 2 RF systems and amplifiers
 3 ion sources
The MedAustron Control System (MACS) creates a

framework for all accelerator devices by providing a stand-
ardized set of essential “services” and interfaces in various
tiers [2].

Architecture
The architecture extends the industry best practice, 3-

tier model [3, 4] in accordance with [5]: (1) presentation
tier, (2) processing tier, (3) equipment tier and (4) frontend
tier. Components in separate tiers that are distributed over
a number of processing devices communicate with each
other through a dedicated Ethernet network. Communica-
tion between equipment tier and frontend tier may also be
achieved through dedicated field-bus and custom links, de-
pending on the imposed constraints. [2] (see Fig. 1)

Figure 1: Architecture of the former MedAustron Control
System (MACSv1).

* These authors contributed equally to this work
† angelika.holler@medaustron.at
‡ sandor.voros@medaustron.at

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP002

General

Control System Upgrades

TUPDP002

473

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

NEED FOR A CHANGE
Although the accelerator's architecture is capable of cov-

ering all current use cases, new needs have emerged, re-
quiring the redesign of upper-tier core components:

The MACS Navigator, which serves as the primary user
interface, is implemented in WinCC OA and performs
functions related to machine preparation, service, and basic
operation. Although the initial concept aimed to separate
the business logic from the presentation layer, certain es-
sential scripts have become closely intertwined with the
user interface.

From the outset, the control system was designed to fa-
cilitate archiving. However, the COTS archiving function
into an Oracle DB [6] appeared somewhat problematic.

In the course of developing the MACS Navigator,
standalone user interfaces, written in LabVIEW, had
been implemented as an alternative. These interfaces com-
municate with the front-end controllers via the Shared Var-
iable Engine, bypassing the SCADA backend.

The Log Viewer tool aids the user in monitoring log
messages sent by underlying devices. In an unfiltered view
the volume of log messages is overwhelming. Setting up a
certain filter is a repetitive, manual task.

The Operational Application [7] is a highly complex
framework that encompasses acquiring a single measure-
ment from a specific device and executing fully automated
tasks for specific user-defined purposes. The framework
and applications are developed in .NET C# and necessitate
in-depth programming expertise.

Tier 3 generates a uniform view of the diverse devices at
tier 4 by introducing autonomously working front-end con-
trollers (FEC) that all follow one design pattern. The
Framework as well as the front-end controllers are written
in LabVIEW. The front-end controllers are controlled and
monitored via the SCADA backend. Due to technological
constraints, the communication takes place via numerous
different native protocols (NI-PSP [8] Shared Variable
Engine OPC DA WinCC OA Distributed Network
Protocol), which leads to increased maintenance efforts
and security flaws.

The architecture has been designed to address cyber se-
curity concerns, which have been exclusively included at
the IT infrastructure level. As cyber security has gained sig-
nificance, managing the overall close integration between
tiers 1 and 2, the incorporation of identical interfaces for
every upper-tier product, and ensuring security for specific
communication protocols have become challenging. The
same change in significance is valid for remote device or
accelerator commissioning. While a secure VPN connec-
tion is a secure initial step, it cannot offer varied access
control levels and potentially grants immediate entry to an
entire network.

In addition to the above-mentioned required changes
MedAustron has taken advantage of this redevelopment
opportunity to improve the user experience with state-of-
the-art technology and to simultaneously minimise mainte-
nance costs by implementing in-house developed tools that
increase customisability. Requisite core components, such

as WinCC OA's SCADA, have been exchanged in close
collaboration with Cosylab.

Overview of Architectural Changes
The User Interface Client is a web application built on

top of a single page web application framework hosted on
an IIS webserver [9]. The architecture of the user interface
application is feature-oriented. This splits functionality
into logical units that address different requirements. Each
feature is composed of different reusable components,
widgets and services that are provided by core and shared
modules to the whole application. The client is either ac-
cessible via a standard web browser, or an installed Elec-
tron client [10], which unleashes its benefits when using a
multi-monitor setup. The web application is written in An-
gular [11] and makes use of COTS components, e.g.
Kendo-UI [12] and Apache ECharts [13]. The responsive
design allows the usage of desktops and mobile devices.

Tier 2a exposes the MACS UI functionality to the end
user clients in the internal and external network. It acts as
a gateway between the user client and tier 2b, the data layer
(see Fig 2).

Figure 2: Overview of the architecture of MACSv2.

 The Application Service, written in .NET C#, is acces-
sible by the User Interface Client over REST API using se-
cured HTTPS and WSS protocols. SignalR is used as the
main data exchange communication service. It provides
real-time web functionality to the MACS UI Web Applica-
tion. The User Data Storage is used for settings and con-
figuration that has to be global to all users on all devices.
A typical use case is to restore user configuration even if
the application is accessed from a different machine.

The Commissioning Worker provides the possibility of
writing procedures with the ability to directly control and
monitor the accelerator, see the following section for more
details.

Tier 2b is responsible for exposing the process data from
the data sources and the stored data from the data storage.
To simplify handling different types of data, a generic ap-
proach is used, where each piece of data, called a data frag-
ment, can be accessed in the same manner, regardless of
the data source specifics. Data access procedures are

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP002

TUPDP002

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

474

General

Control System Upgrades

generalized as read, write, browse, subscribe, unsubscribe
and invoke operations. Such a narrow set of operations sig-
nificantly reduces the complexity while still exposing all
required functionality of the data sources.

The ACSProxy is a component protecting central ser-
vices of MACS from unintended access. It serves as a gate-
way and single point of communication between lower-
level supervisory control system functionality, which ena-
bles it to generically monitor and control all commands and
requests, and the upper tiers of the control system. As a
gateway, it is also well suited to be placed at a network bor-
der which enables it to facilitate a secure network architec-
ture. The ACSProxy receives generic requests from the Ap-
plication Service components, which contain the service
the component is trying to reach, the operation and its re-
lated payload. The ACSProxy then compares this generic
request against a configurable set of rules and forwards it
if granted. The ACSProxy is classified as medical software
class C.

The central functional component of tier 2b, the Data
Service, consolidates the information produced by other
tier 2b, or tier 3 components to expose the data in the data
layer with a unified interface. The Data Service directs re-
quests to a specified component for processing and also
publishes messages back to subscribers on a monitored
property change. Measurements are sent from tier 3 to the
upper tiers via the Measurement Server in form of data
chunks, the same applies for log messages via the Logging
Server. The Data Service receives all measurements and
log messages and distributes them based on subscriptions
to the Application Service and stores them in a Time-
scaleDB for archiving purposes [14].

One of the challenges during the exchange of
WinCC OA was the search for a solution for middleware
communication between front-end controllers and the up-
per tiers. The COTS product Atvise from Bachmann
Visutec [15] was chosen, as its core is based on OPC UA
and supports object-oriented configuration. Besides the
OPC UA server capabilities, the Atvise connect subproduct
was chosen for connecting PLCs. The communication in
all directions is signed and encrypted. To correlate meas-
urements and log messages with front-end controller states,
a selected subset of OPC UA nodes is archived through the
Data Service as well.

Overview of User Interface Changes
The changes on interface level have been introduced in

close collaboration with the Operations team to enable a
smooth transition between the two systems, while enhanc-
ing functionalities or adding missing functionalities which
might have not been reported over the years. Figure 3 com-
pares the Power Controller device expert panel: MACSv1
is visible in the top image, whereas the lower image depicts
the new user interface. The following changes have been
introduced:
 Incorporated logging for every panel with device de-

pendent custom filter
 Introduced tabs in windows

 Last open tabs are automatically restored from local
user data storage after panel restart

 Full text search for every tree view
 Full text search provided by web browser
 Text based content (controls and indicators as well)

can be selected and copied to clipboard
 Archived measurement can be retrieved and displayed

in the same panels as “live” measurement
 No hidden functionalities (right click, etc.) to support

mobile devices
 Collapsed expert functionalities to set focus on basic,

vital features
 Incorporated standalone UIs

Figure 3: Power Converter Expert panel in MACSv1 (top)
and the equivalent panel in MACSv2 (bottom).

COMMISSIONING WORKER (COW)
The Commissioning Worker is an application that inter-

prets Python and is smoothly integrated into the control
system architecture and its user interface. COW provides
the possibility to write Procedures with the capability of
directly controlling and monitoring the accelerator and in-
tegrates additional Python libraries and applications (e.g.
for measurement data analysis or calculation of machine
parameters). It provides the possibility to either write and
execute Procedures via the UI, or integrate existing Proce-
dures and Frameworks from a Git repository.

Table 1 describes important COW-related terminology.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP002

General

Control System Upgrades

TUPDP002

475

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Table 1: Definition of COW Terms
Term Definition
Frame-
work

A Framework is a version-controlled
collection of Python and support
files. An example of a MedAustron
Framework is PACMAN (Python Al-
gorithms Coded for Measurement
data ANalysis) [16].

Proce-
dure

A Procedure is a Python script that
can be executed in the COW. Proce-
dures make use of the functionality
provided by Frameworks or other
Procedures.

Task A Task can be executed/sched-
uled/triggered in the COW. It is the
combination of a Procedure with in-
put parameters and settings.

Task Ex-
ecution

A Task Execution is an instance of a
Task.

Result A Result is an artifact produced as an
output of a Task Execution.

Taking the following facts into consideration, the deci-

sion was taken to pursue the development of COW:
COW connects two worlds:
 The development of MACS as part of a medical prod-

uct requires software development according to the
standard for medical device software [17]. This results
in high-quality documentation and thorough valida-
tion, but it also entails a prolonged Time-to-Deploy-
ment, strict change management and development
within a dedicated Control System development team.

 The creation of Procedures for various purposes during
operation, commissioning, or ad-hoc-troubleshooting
demand more flexibility in the development process,
its use cases ranging from one-time use Procedures as-
sembled during a commissioning shift to fully vali-
dated Procedures executed during a daily quality as-
surance (QA). Development can ideally be done by the
expert user (e.g., a physicist responsible for a commis-
sioning task).

In the previous version of the control system, the concept
of the Operational Application Framework [7] had the aim
to bridge this gap, but in the end proved to be too complex
in its implementation. Consequently, development of addi-
tional Operational Applications still ended up in the soft-
ware development team.

The replacement of core components of MACS in com-
bination with the initial commissioning use case of addi-
tional facilities would have required a complete rework of
the Operational Applications Framework and the existing
Operational Applications.

Multiple Frameworks in Python are already in use at
MedAustron, and the experience from the last years

showed that the manufacturer team at MedAustron has
both the motivation and the knowledge to further extend
those Frameworks.

With the MACS upgrade the control system already pro-
vides the Application Service’s API gateway, an interface
to the lower tiers of the control system, foreseen to be used
by panels and scripts.

Architecture
The COW web client is implemented as part of the ex-

isting MACS UI Angular web app. Existing patterns and
Frameworks are reused to implement the new COW com-
ponents.

The COW Gateway distinguishes incoming requests by
type and forwards them to internal services. The execution
of Tasks is delegated to the COW Execution Engine.

The COW Execution Engine manages the execution of
Procedures. It receives execution requests from the COW
Gateway, either for scheduled, event-based or manual exe-
cutions. It collects all required Frameworks and scripts for
Task Execution, then creates the so-called execution envi-
ronment which runs the COW Python.NET. The COW Ex-
ecution Engine monitors all running Tasks and reports state
changes to the COW Gateway. The COW Gateway is re-
sponsible to inform subscribers, e.g. web clients, about the
state change.

COW Python.NET is a .NET application for interacting
with Python. It initializes the Python Engine of the Py-
thon.NET package. The package uses the locally installed
Python version to execute scripts inside a .NET context.
The Python.NET process waits for the execution to finish
and forwards possible exceptions to the governing process.
Any other communication of the script runs via PAAPI and
the API Gateway.

PAAPI (Python Accelerator control system Application
Programming Interface) is a Python Framework that acts
as an abstraction layer of MACS UI’s API Gateway, fo-
cussed on the end users’ needs.

Python Frameworks and Procedures are stored in a
Git repository. At Task creation the user has the opportunity
to choose the version or branch of the Procedure and the
involved Frameworks via the web client. Simple ad-hoc
Procedures can be modified directly via the web client.

The Procedure Store is a collection of Git repositories
that makes all the frameworks and procedures accessible to
the Execution Engine

The COW Database is a relational database where the
Result data is stored.

Sample Procedure for Multi-Energy-Steering
A common beam commissioning task is the alignment of

the beam to pass through the optical centre of multiple con-
secutive quadrupoles for several extraction energies.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP002

TUPDP002

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

476

General

Control System Upgrades

Figure 4: COW sample Procedure “Multi-Energy-Steering”.

As the absolute positions of the in-line beam profile
monitors (BPMs) cannot be assumed to be accurate, a se-
ries of corrector magnet scans combined with quadrupole
strength variations have to be performed to establish a
beam trajectory that passes through the quadrupole centres.
This trajectory can be used to obtain the position offsets of
the BPMs which can then be used as targets in an orbit-
response-matrix (ORM) based beam steering approach for
the various extraction energies.

In the new MACS architecture, a single procedure in the
COW would allow to autonomously perform the complete
steering for all required energies and directly store the
newly obtained corrector magnet setpoints in the machine
physics database (see Fig. 4). In the current MACS archi-
tecture, there is no communication established between the
accelerator and the analysis frameworks. Therefore, man-
ual intervention is required every time measurements are
taken, to be able to proceed with the analysis. On top of
that, incoming measurements can be evaluated as soon as
they are available, leading to additional reduction of anal-
ysis time, as part of the analysis can be parallelized with
the ongoing measurement chain.

Outlook
The Commissioning Worker is currently under develop-

ment. A proof-of-concept version is ready, including a few
sample Procedures.

One simple Procedure, already tested through all layers
of the COW and MACS UI, was bringing a single device
into a different operational state.

In this simple example the Python Procedure has two in-
put parameters: the device name and the target state. On
Task Execution a PAAPI method is called, which translates
to the according MACS UI’s API Gateway’s method.

This is the equivalent of manually navigating to the de-
vice in question via a standard UI panel, selecting the de-
vice and selecting the target status in the device’s state ma-
chine UI.

The first COW version targeted to the end user is
planned to be ready in 2024, with a fully defined PAAPI,
and the first available “real-life” Procedures.

The COW is designated to be used at the facility in Aus-
tria and other future facilities.

The expectancy towards the COW is:
 A great reduction in machine time required for com-

missioning tasks and reduction in error-proneness, by
removing manual iterative steps and not requiring con-
stant context switching.

 Flexibility, either to create quick one-time Procedures,
or to create validated Procedures and Frameworks con-
forming with all the necessary development processes.

 Traceability (Who executed which Procedure, in
which version, using which Framework versions,
when, with what Result?).

 Smooth integration into the MACS architecture, there-
fore not opening additional entry points into the medi-
cal product, with obvious advantages regarding cyber
security.

For this reason, COW is a highly anticipated extension
to our control system by our commissioning, expert and
operations teams.

REFERENCES
[1] WinCC OA, https://www.winccoa.com
[2] J. Gutleber et al., “The MedAustron Accelerator Control

System”, in Proc. ICALEPCS'11, Grenoble, France, Oct.
2011, paper MOBAUST03, pp. 9-12.

[3] W. W. Eckerson, “Three Tier Client/Server Architecture:
Achieving Scalability, Performance and Efficiency in Client
Server Applications”, Open Information Systems, 1995,
1:10.

[4] Synchrotron Radiation Sources: A Primer, H. Winick, Ed.
World Scientific, 1994, pp. 218.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP002

General

Control System Upgrades

TUPDP002

477

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

[5] L. Evans and P. Bryant (eds.) “The CERN Large Hadron
Collider: Accelerator and Experiments”, J. Instrum., vol. 3,
chapter 9, p. 98, 2008.
doi:10.1088/1748-0221/3/08/S08001

[6] Oracle DB,
https://www.oracle.com/database/technologies

[7] M. Hager and M. Regodic, “A Modular Software Architec-
ture for Applications that Support Accelerator Commission-
ing at MedAustron”, in Proc. ICALEPCS'15, Melbourne,
Australia, Oct. 2015, pp. 938-941. doi:10.18429/JACoW-
ICALEPCS2015-WEPGF101

[8] Using the LabVIEW Shared Variable,
https://www.ni.com/en/support/documenta-
tion/supplemental/06/using-the-labview-
shared-variable.html

[9] IIS Webserver Overview,
https://learn.microsoft.com/en-us/iis/get-
started/introduction-to-iis/iis-web-server-
overview

[10] Electron, https://www.electronjs.org
[11] Angular, https://angular.io
[12] Kendo UI for Angular,

https://www.telerik.com/kendo-angular-ui
[13] Apache ECharts, https://echarts.apache.org
[14] TimescaleDB, https://www.timescale.com
[15] Atvise, https://www.atvise.com
[16] A. Wastl, A. Garonna, T. K. D. Kulenkampff, and S. Nowak,

“PACMAN - the MedAustron Measurement Data Analysis
Framework”, in Proc. IPAC'16, Busan, Korea, May 2016,
pp. 2774-2777.
doi:10.18429/JACoW-IPAC2016-WEPOR045

[17] “Medical device software - Software life cycle processes,”
International Electrotechnical Commission (IEC), IEC
62304, 2015.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP002

TUPDP002

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

478

General

Control System Upgrades

