
MIGRATING FROM ALARM HANDLER TO PHOEBUS ALARM-SERVER
AT BESSY II AND HZB

M. Gotz∗, T. Birke, Helmholtz-Zentrum Berlin, Berlin, Germany

Abstract
The BESSY II lightsource has been in operation at

Helmholtz-Zentrum Berlin (HZB) for 25 years and is ex-
pected to be operated for more than the next decade. The
EPICS Alarm Handler (ALH) has served as the basis for a
reliable alarm system for BESSY II as well as other facili-
ties and laboratories operated by HZB. To preempt software
obsolescence and enable a centralized architecture for the
alarm systems running throughout HZB, it is being migrated
to the alarm-service developed within the Control System
Studio/Phoebus ecosystem. To facilitate simultaneous op-
eration of the old alarm system while evaluating the new
system, tools were developed to automate creation of the
Phoebus alarm-service configuration files in the control sys-
tems’ build process. Additionally, tools and configurations
were devised to mirror the old system’s key features in the
new one. This contribution presents the tools developed and
the infrastructure deployed to use the Phoebus alarm-service
at HZB.

MOTIVATION
The ALH [1] has served the HZB well as the basis for the

current alarm system of the BESSY II light source for 25
years. However, with the prospect of operating BESSY II
for another 10 years the desire arose to replace it with a more
modern system. The key limitations of the ALH are that it
is a single application requiring a graphical user interface
(GUI) and that it is no longer actively maintained. Instances
on different computers are mostly independent from one
another, creating problems with synchronicity and requiring
special care for automated actions which should only be
performed once. Furthermore, no more active development
means future obsolescence is always a risk and there will be
no support for newer EPICS developments like pvAccess.

The Phoebus [2] alarm system uses an alarm server, of
which only one instance is required, communicating with
multiple GUIs via a Kafka message broker. This approach
appealed greatly to us, eliminating most of the above men-
tioned shortcoming of the ALH. Furthermore, Phoebus
seemed to us the only truly viable replacement candidate for
ALH. There is, to our knowledge, no other alarm system
in the EPICS ecosystem that is both actively developed and
with contributions from more than one institute.

OVERVIEW AND SPECIFIC NEEDS
The Phoebus alarm system is well documented [2]. At its

heart is a Kafka message broker. An alarm server reads the
configuration from Kafka and writes alarm state changes to

∗ malte.gotz@helmholtz-berlin.de

Kafka. Clients read alarm state changes from Kafka, display
and allow changes to the configuration via Kafka. Additional
services exist to log alarms to Elastic Search or log changes
to the configuration.

The basic setup is simple enough. However, covering all
our needs required additional developments. While manual
addition of PVs to the alarm configuration of Phoebus is
easy, at HZB we have a well established alarm configuration
for BESSY II and our other labs. With roughly 10000 PVs in
it, we needed an automated way to convert this configuration.
Particularly, because parts of this configuration are generated
from spreadsheets, which change fairly frequently.

Another aspect for us were access controls. The control
system runs in a separate network, which should be able
to operate in isolation. Also, changes to the alarm-system,
like acknowledging alarms, should be possible from the
entire network. Nevertheless, read-only remote access to
the alarm-system should be possible from within the wider
institute.

Finally, we required a method of notifying operators of
alarms via an internal SMS-like service. For the ALH a
script modified the configuration for one instance after de-
ployment adding severity commands to each alarm. A more
transparent system was desired for the new setup.

CONFIGURATION CONVERSION AND
GENERATION

ALH and Phoebus offer different features in the alarm
configuration. For instance, the force mask in ALH allows
changes to latching or logging behavior, in addition to the
ability to disable an alarm based on the value of other PVs.
On the other hand, the annunciation is only present in Phoe-
bus. Therefore, a perfect conversion between these two
formats is not possible. Our goal was a tool to convert the
unambiguous parts and inform us about the problematic por-
tions. We developed the python package phoebusalarm [3]
to accomplish this. It parses alh-files into a python object
structure. From that structure both alh and phoebus xml-
files can be exported. In addition, the package can be used
to programmatically create an alarm tree and export it into
either format. Using this tool and manual intervention where
necessary, we converted our alarm tree into the phoebus for-
mat. After the manual conversion was complete the process
was also integrated into our build process. This ensures any
changes to alh-files remain forward compatible with phoe-
bus. Additionally, all the resulting alarm-configuration files
are combined into a single file and checked against a schema
with xmllint ensuring the presence of all included files and
syntactic correctness.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP016

TUPDP016

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

526

General

Control System Upgrades



SYSTEM LAYOUT

Where ALH is a single application, the Phoebus alarm sys-
tem needs hat least a Kafka message broker, an alarm-server
service and GUI Client(s). We needed to provision these
services in a way that is ideally fault tolerant and satisfies
our needs for access permissions. Those were that BESSYII
operates on a segregated network that must be able to oper-
ate in isolation. All machines in the control-network should
be able to acknowledge alarms. From outside the network
we need to read the status of the alarm system. Further-
more, we want to add additional alarm servers from other
networks in the future. The resulting layout is sketched in
Fig. 1. The core idea is to have multiple Kafka clusters
with mirroring. Inside the control network Kafka and the
alarm-server run on virtual machines, providing the desired
failover. Network restrictions limit access to these servers
and the Kafka topics are writeable to anyone in the network.
The Kafka Mirrormaker 2 functionality is used to mirror the
cluster from inside the control network to another cluster
outside. On the outside cluster, access control lists (ACLs)
are setup to only allow the mirroring process write access.
Otherwise, the topics are read only. Logging to an existing
elastic search cluster and notifying operators is performed
from this mirrored cluster.

Figure 1: Layout of the components involved in the Phoebus
alarm system at BESSYII. Core is the isolation of the control
network and replication of the Kafka messages to an outside
server, simplifying access management.

SENDING NOTIFICATIONS
Our existing setup uses an alh-configuration modified by

a script to notify operators on every alarm. To replicate this
behavior in Phoebus we would need to attach an automated
action to every PV in the configuration. While this could
be scripted, it is opaque and hard to modify, if, for instance,
an alarm should not be notified on. On the other hand,
Phoebus provides an annunciator feature as part of its alarm
system. Every new alarm, for which annunciation is enabled,
is written to a Kafka topic called <server-name>Talk by the
alarm-server. Phoebus includes a Kafka-client that reads the
topic and voices the alarm. We wrote our own Kafka-client,
which instead of annunciating the alarms via speaker, sends
out text notifications to the operators. The notification of
operators is thus nicely controlled by the annunciation flag
in the alarm configuration.

EXPERIENCES
The presented solutions have been implemented to a

varying degree. An automatic conversion of the ALH-
configuration to phoebus is part of our build process for
over a year. It is stable and produces a faithful replication of
the ALH-source. In addition, the automatic conversion com-
bined with the xmllint run is a useful build-time check on the
validity of the original configuration. Errors like missing or
misspelled include files or duplicate group names were dis-
covered und subsequently remedied, thereby improving the
old system even before the new one is in production. Setup
of the mirroring Kafka-clusters, with an alarm-server and
logger is also completed and running in a test configuration
for half a year. While the initial setup of a single node Kafka-
cluster and an alarm-server is straight forward, going the a
reliable system required more effort than initially anticipated.
With the Phoebus alarm system we were required to oper-
ate and understand at least three software stacks: Phoebus,
Kafka and Elasticsearch. Due to an existing Elasticsearch
installation we only had two new systems, but this still cre-
ated considerable work. Lacking previous experience with
deploying java applications, even relatively simple tasks like
limiting Kafka’s log-output such that it would not exceed
available disk-space, required several iterations. Bringing
proof-of-concept installations into a reliable format to man-
age with Ansible was another multi stage process, that is in
part still ongoing. Nevertheless, the test setup is working
well. The replication across the clusters works as expected
and access from inside and outside the control network is
controlled without further configuration or authentication
needs on the clients. Our own SMS-notification system as a
Kafka-client is implemented, but is still awaiting larger test-
ing. This is the final component still missing for us, before
attempting to switch to Phoebus as our main system.

CONCLUSION
Migrating the BESSYII alarm system to Phoebus is well

on its way and we could implement all our specific needs.
The developed conversion tool might be useful for other

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP016

General

Control System Upgrades

TUPDP016

527

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



sites atempting a simlar migration. However, converting
an existing configuration is but the first step. Establishing
reliable, manageable and scalable installation of the different
services required for the Phoebus alarm-system has been the
more time consuming task. Its difficulty heavily depends on
existing infrastructure, experience and local requirements.

ACKNOWLEDGEMENTS
We thank the members of the accelerator control system

group for their support. In particular, D. Engel, B. Franksen,
V. Laux and S. Heise for their support in the setup of the

various systems.

REFERENCES
[1] EPICS alarm handler, https://epics.anl.gov/
extensions/alh/index.php

[2] Phoebus alarms, https://control-system-studio.
readthedocs.io/en/latest/app/alarm/ui/doc/
index.html

[3] M. Gotz, Phoebusalarm, version 2.1.2, 2023. https://
github.com/hz-b/phoebusalarm

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP016

TUPDP016

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

528

General

Control System Upgrades


