Keyword: power-supply
Paper Title Other Keywords Page
MO3AO03 Commissioning and Optimization of the SIRIUS Fast Orbit Feedback controls, feedback, operation, network 123
 
  • D.O. Tavares, M.S. Aguiar, F.H. Cardoso, E.P. Coelho, G.R. Cruz, A.F. Giachero, L. Lin, S.R. Marques, A.C.S. Oliveira, G.S. Ramirez, É.N. Rolim, L.M. Russo, F.H. de Sá
    LNLS, Campinas, Brazil
 
  The Sirius Fast Orbit Feedback System (FOFB) entered operation for users in November 2022. The system design aimed at minimizing the overall feedback loop delay, understood as the main performance bottleneck in typical FOFB systems. Driven by this goal, the loop update rate was chosen as high as possible, real-time processing was entirely done in FPGAs, BPMs and corrector power supplies were tightly integrated to the feedback controllers in MicroTCA crates, a small number of BPMs was included in the feedback loop and a dedicated network engine was used. These choices targeted a disturbance rejection crossover frequency of 1 kHz. To deal with the DC currents that build up in the fast orbit corrector power supplies, a method to transfer the DC control effort to the Slow Orbit Feedback System (SOFB) running in parallel was implemented. This contribution gives a brief overview of the system architecture and modelling, and reports on its commissioning, system identification and feedback loop optimization during its first year of operation.  
slides icon Slides MO3AO03 [78.397 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO03  
About • Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 03 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO15 Enhancing Electronic Logbooks Using Machine Learning controls, interface, electron, database 382
 
  • J. Maldonado, S.L. Clark, W. Fu, S. Nemesure
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704
The electronic logbook (elog) system used at Brookhaven National Laboratory’s Collider-Accelerator Department (C-AD) allows users to customize logbook settings, including specification of favorite logbooks. Using machine learning techniques, customizations can be further personalized to provide users with a view of entries that match their specific interests. We will utilize natural language processing (NLP), optical character recognition (OCR), and topic models to augment the elog system. NLP techniques will be used to process and classify text entries. To analyze entries including images with text, such as screenshots of controls system applications, we will apply OCR. Topic models will generate entry recommendations that will be compared to previously tested language processing models. We will develop a command line interface tool to ease automation of NLP tasks in the controls system and create a web interface to test entry recommendations. This technique will create recommendations for each user, providing custom sets of entries and possibly eliminate the need for manual searching.
 
slides icon Slides TUMBCMO15 [0.905 MB]  
poster icon Poster TUMBCMO15 [4.697 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO15  
About • Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 24 November 2023 — Issued ※ 10 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO16 Research and Development of the Fast Orbit Feedback System for HEPS feedback, timing, controls, interface 386
 
  • P. Zhu, Y.C. He, D.P. Jin, Y.L. Zhang
    IHEP, Beijing, People’s Republic of China
  • Z. Lei
    CSNS, dongguan, People’s Republic of China
  • Z. Lei
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • D.Y. Wang
    DNSC, Dongguan, People’s Republic of China
  • Z.X. Xie
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  The Fast Orbit Feedback (FOFB) system plays a critical role on the beam orbit stability in the storage ring of the High Energy Photon Source (HEPS), which is a fourth-generation diffraction-limited synchrotron radiation source, under construction in Beijing at present. Based on the latest development of FOFB systems, this paper addresses the design and implementation of the hardware and software, including the design of the dual-loop link, the architecture of sub-station hardware, the data transmission and feedback logic, and so on. The total latency is minimized to achieve an overall closed-loop bandwidth of 500Hz.  
slides icon Slides TUMBCMO16 [1.656 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO16  
About • Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 24 November 2023 — Issued ※ 11 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO20 Introduction and Status of Fermilab’s ACORN Project controls, operation, hardware, software 401
 
  • D. Finstrom, E.G. Gottschalk
    Fermilab, Batavia, Illinois, USA
 
  Modernizing the Fermilab accelerator control system is essential to future operations of the laboratory’s accelerator complex. The existing control system has evolved over four decades and uses hardware that is no longer available and software that uses obsolete frameworks. The Accelerator Controls Operations Research Network (ACORN) Project will modernize the control system and replace end-of-life power supplies to enable future accelerator complex operations with megawatt particle beams. An overview of the ACORN Project will be presented along with a summary of recent R&D activities.  
slides icon Slides TUMBCMO20 [0.581 MB]  
poster icon Poster TUMBCMO20 [0.455 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO20  
About • Received ※ 04 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO24 A New Real-Time Processing Platform for the Elettra 2.0 Storage Ring feedback, controls, real-time, network 419
 
  • G. Gaio, A.I. Bogani, M. Cautero, L. Pivetta, G. Scalamera, I. Trovarelli
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • L. Anastasio
    University of L’Aquila, L’Aquila, Italy
 
  Processing synchronous data is essential to implement efficient control schemes. A new framework based on Linux and DPDK will be used to acquire and process sensors and control actuators at very high repetition rate for Elettra 2.0. As part of the ongoing project, the actual fast orbit feedback subsystem is going to be re-implemented with this new technology. Moreover the communication performance with the new power converters for the new storage ring is presented.  
slides icon Slides TUMBCMO24 [0.683 MB]  
poster icon Poster TUMBCMO24 [0.218 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO24  
About • Received ※ 02 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 08 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP028 Challenges of the COSY Synchrotron Control System Upgrade to EPICS controls, EPICS, synchrotron, timing 561
 
  • C. Böhme, C. Deliege, M. Simon, M. Thelen
    FZJ, Jülich, Germany
  • V. Kamerdzhiev
    GSI, Darmstadt, Germany
  • R. Modic, Z. Oven
    Cosylab, Ljubljana, Slovenia
 
  The COSY (COoler SYncchrotron) at the Forschungszentrum Jülich is a hadron accelerator build in the early 90s, with work started in the late 80s. At this time the whole control system was based on a self-developed real-time operating system for Motorola m68k boards, utilizing, unusual for this time, IP-networks as transport layer. The GUI was completely based on Tcl/Tk. After 25 years of operation, in 2016, it was decided to upgrade the control system to EPICS and the GUI to CS-Studio, in order to e.g. allow a better automatization or automatized archiving of operational parameters. This was done together with Cosylab d.d. bit by bit while the synchrotron was in operation, and because of the complexity is still ongoing. The experiences of the stepwise upgrade process will be presented and a lessons learned will be emphasized.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP028  
About • Received ※ 06 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 14 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP043 Final Design of Control and Data Acquisition System for the ITER Heating Neutral Beam Injector Test Bed controls, experiment, data-acquisition, network 612
 
  • L. Trevisan, A.F. Luchetta, G. Manduchi, G. Martini, A. Rigoni, C. Taliercio
    Consorzio RFX, Padova, Italy
  • N. Cruz
    IPFN, Lisbon, Portugal
  • C. Labate, F. Paolucci
    F4E, Barcelona, Spain
 
  Funding: This work has been carried out within the framework of the EUROfusion Consortium funded by the European Union via Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion)
Tokamaks use heating neutral beam (HNB) injectors to reach fusion conditions and drive the plasma current. ITER, the large international tokamak, will have three high-energy, high-power (1MeV, 16.5MW) HNBs. MITICA, the ITER HNB prototype, is being built at the ITER Neutral Beam Test Facility, Italy, to develop and test the ITER HNB, whose requirements are far beyond the current HNB technology. MITICA operates in a pulsed way with pulse duration up to 3600s and 25% duty cycle. It requires a complex control and data acquisition system (CODAS) to provide supervisory and plant control, monitoring, fast real-time control, data acquisition and archiving, data access, and operator interface. The control infrastructure consists of two parts: central and plant system CODAS. The former provides high-level resources such as servers and a central archive for experimental data. The latter manages the MITICA plant units, i.e., components that generally execute a specific function, such as power supply, vacuum pumping, or scientific parameter measurements. CODAS integrates various technologies to implement the required functions and meet the associated requirements. Our paper presents the CODAS requirement and architecture based on the experience gained with SPIDER, the ITER full-size beam source in operation since 2018. It focuses on the most challenging topics, such as synchronization, fast real-time control, software development for long-lasting experiments, system commissioning, and integration.
 
poster icon Poster TUPDP043 [0.621 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP043  
About • Received ※ 05 October 2023 — Accepted ※ 10 December 2023 — Issued ※ 19 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP101 A Modular Approach for Accelerator Controls Components Deployment for High Power Pulsed Systems controls, kicker, timing, operation 788
 
  • S. Pavis, R.A. Barlow, C. Boucly, E. Carlier, C. Chanavat, C.A. Lolliot, N. Magnin, P. Van Trappen
    CERN, Meyrin, Switzerland
  • N. Voumard
    European Organization for Nuclear Research (CERN), Geneva, Switzerland
 
  As part of the LHC Injector Upgrade (LIU) project, the controls of the PSB and PS injection kickers at CERN have been upgraded during Long Shutdown 2 (LS2) from heterogeneous home-made electronic solutions to a modular and open architecture. Despite both kickers have significantly different functionalities, topologies and operational requirements, standardized hardware and software control blocks have been used for both systems. The new control architecture is built around a set of sub-systems, each one with a specific generic function required for the control of fast pulsed systems such as equipment and personnel safety, slow control and protection, high precision fast timing system, fast interlocking and protection, pulsed signal acquisition and analysis. Each sub-system comprises a combined integration of hardware components and associated low level software. This paper presents the functionality of the different sub-systems, illustrates how they have been integrated for the two different use-cases, discusses the lessons learned from these first implementations and identifies possible evolution in view of deployment in other installations during Long Shutdown 3 (LS3).  
poster icon Poster TUPDP101 [0.842 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP101  
About • Received ※ 06 October 2023 — Revised ※ 21 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 06 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP117 Classification and Prediction of Superconducting Magnet Quenches superconducting-magnet, GUI, operation, experiment 856
 
  • J.A. Einstein-Curtis, J.P. Edelen, M.C. Kilpatrick, R. O’Rourke
    RadiaSoft LLC, Boulder, Colorado, USA
  • K.A. Drees, J.S. Laster, M. Valette
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0021699.
Robust and reliable quench detection for superconducting magnets is increasingly important as facilities push the boundaries of intensity and operational runtime. RadiaSoft has been working with Brookhaven National Lab on quench detection and prediction for superconducting magnets installed in the RHIC storage rings. This project has analyzed several years of power supply and beam position monitor data to train automated classification tools and automated quench precursor determination based on input sequences. Classification was performed using supervised multilayer perceptron and boosted decision tree architectures, while models of the expected operation of the ring were developed using a variety of autoencoder architectures. We have continued efforts to maximize area under the receiver operating characteristic curve for the multiple classification problem of real quench, fake quench, and no-quench events. We have also begun work on long short-term memory (LSTM) and other recurrent architectures for quench prediction. Examinations of future work utilizing more robust architectures, such as variational autoencoders and Siamese models, as well as methods necessary for uncertainty quantification will be discussed.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP117  
About • Received ※ 08 October 2023 — Revised ※ 22 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 07 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP132 Temperature Control of Crystal Optics for Ultrahigh-Resolution Applications controls, EPICS, optics, lattice 899
 
  • K.J. Gofron
    ORNL, Oak Ridge, Tennessee, USA
  • Y.Q. Cai, D.S. Coburn, A. Suvorov
    BNL, Upton, New York, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Science, Scientific User Facilities Division under Contract No. DE-AC05-00OR22725
The temperature control of crystal optics is critical for ultrahigh resolution applications such as those used in meV-resolved Inelastic Scattering. Due to the low count rate and long acquisition time of these experiments, for 1-meV energy resolution, the absolute temperature stability of the crystal optics must be maintained below 4 mK to ensure the required stability of lattice constant, thereby ensuring the energy stability of the optics. Furthermore, the temperature control with sub-mK precision enables setting the absolute temperature of individual crystal, making it possible to align the reflection energy of each crystal’s rocking curve in sub-meV resolution thereby maximizing the combined efficiency of the crystal optics. In this contribution, we report the details of an EPICS control system using PT1000 sensors, Keithley 3706A 7.5 digits sensor scanner, and Wiener MPOD LV power supply for the analyzer crystals of the Inelastic X-ray Scattering (IXS) beamline 10-ID at NSLS-II**. We were able to achieve absolute temperature stability below 1 mK and sub-meV energy alignment for several asymmetrically cut analyzer crystals. The EPICS ePID record was used for the control of the power supplies based on the PT1000 sensor input that was read with 7.5 digits accuracy from the Keithley 3706A scanner. The system enhances the performance of the meV-resolved IXS spectrometer with currently a 1.4 meV total energy resolution and unprecedented spectral sharpness for studies of atomic dynamics in a broad range of materials.
 
poster icon Poster TUPDP132 [0.809 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP132  
About • Received ※ 28 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 30 November 2023 — Issued ※ 10 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3AO03 Noise Mitigation for Neutron Detector Data Transport detector, FEM, electron, neutron 1066
 
  • K.J. Gofron
    BNL, Upton, New York, USA
  • R. Knudson, C. Ndo
    ORNL, Oak Ridge, Tennessee, USA
  • B. Vacaliuc
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Science, Scientific User Facilities Division under Contract No. DE-AC05-00OR22725.
Detector events at User Facilities require real-time fast transport of large data sets. Since construction, the SNS user facility successfully transported data using an in-house solution based on Channel Link LVDS point-to-point data protocol. Data transport solutions developed more recently have higher speed and more robustness; however, the significant hardware infrastructure investment limits migration to them. Compared to newer solutions the existing SNS LVDS data transport uses only parity error detection and LVDS frame error detection. The used channel link is DC coupled, and thus sensitive to noise from the electrical environment since it is difficult to maintain the same LVDS common reference potential over an extensive system of electronic boards in detector array networks. The SNS existing Channel Link* uses LVDS for data transport with clock of about 40 MHz and a mixture of parallel and serial data transport. The 7 bits per twisted pair in each clock cycle are transported over three pairs of Cat7 cable. The maximum data rate is about 840 Mbps per cat7 cable. The DS90CR217 or DS90CR218 and SN65LVDS32BD components are used with shielded Cat7 cabling in transporting LVDS data. Here we discuss noise mitigation methods to improve data transport within the existing as build infrastructure. We consider the role of shielding, ground loops, as well as specifically the use of toric ferrite insolation transformer for rf noise filtering.
* K. Vodopivec et al., "High Throughput Data Acquisition with EPICS", 16th ICALEPCS, 2017, Barcelona Spain, doi: 10.18429/JACoW-ICALEPCS2017-TUBPA05
 
slides icon Slides WE3AO03 [3.420 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3AO03  
About • Received ※ 04 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 18 December 2023 — Issued ※ 22 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP002 The Micro-Services of Cern’s Critical Current Test Benches controls, software, operation, FPGA 1295
 
  • C. Charrondière, A. Ballarino, C. Barth, J.F. Fleiter, P. Koziol, H. Reymond
    CERN, Meyrin, Switzerland
  • O.Ø. Andreassen, T. Boutboul, S.C. Hopkins
    European Organization for Nuclear Research (CERN), Geneva, Switzerland
 
  In order to characterize the critical-current density of low temperature superconductors such as niobium¿titanium (NbTi) and niobium¿tin (Nb₃Sn) or high temperature superconductors such as magnesium-diboride MgB₂ or Rare-earth Barium Copper Oxide REBCO tapes, a wide range of custom instruments and interfaces are used. The critical current of a superconductor depends on temperature, magnetic field, current and strain, requiring high precision measurements in the nano Volt range, well-synchronized instrumentation, and the possibility to quickly adapt and replace instrumentation if needed. The micro-service based application presented in this paper allows operators to measure a variety of analog signals, such as the temperature of the cryostats and sample under test, magnetic field, current passing through the sample, voltage across the sample, pressure, helium level etc. During the run, the software protects the sample from quenching, controlling the current passed through it using high-speed field programmable gate array (FPGA) systems on Linux Real-Time (RT) based PCI eXtensions controllers (PXIe). The application records, analyzes and reports to the external Oracle database all parameters related to the test. In this paper, we describe the development of the micro-service based control system, how the interlocks and protection functionalities work, and how we had to develop a multi-windowed scalable acquisition application that could be adapted to the many changes occurring in the test facility.  
poster icon Poster THPDP002 [6.988 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP002  
About • Received ※ 06 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 26 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP025 The Superconducting Undulator Control System for the European XFEL controls, undulator, FEL, operation 1362
 
  • M. Yakopov, S. Abeghyan, S. Casalbuoni, S. Karabekyan
    EuXFEL, Schenefeld, Germany
  • M.G. Gretenkord, D.P. Pieper
    Beckhoff Automation GmbH, Verl, Germany
  • A. Hobl, A.S. Sendner
    Bilfinger Noell GmbH, Wuerzburg, Germany
 
  The European XFEL development program includes the implementation of an afterburner based on superconducting undulator (SCU) technology for the SASE2 hard X-ray beamline. The design and production of the first SCU prototype, called PRE -SerieS prOtotype (S-PRESSO), together with the required control system, are currently underway. The architecture, key parameters, and detailed description of the functionality of the S-PRESSO control system are discussed in this paper.  
poster icon Poster THPDP025 [2.959 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP025  
About • Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP029 Alpi-Piave Beam Transport Control System Upgrade at Legnaro National Laboratories controls, EPICS, beam-transport, Ethernet 1374
 
  • M. Montis, F. Gelain, M.G. Giacchini
    INFN/LNL, Legnaro (PD), Italy
 
  During the last decade, the control system employed for ALPI and PIAVE Accelerators was upgraded to the new EPICS-based framework as part of the new standards adopted in the SPES project in construction in Legnaro. The actual control for beam transport was fully completed in 2015 and it has been in production since that year. Due to the power supply upgrade and to optimize costs and maintenance time, the original controllers based on in-dustrial PCs were substituted with dedicated serial-over-ethernet devices and Virtual Machines (VMs). In this work we will describe the solution designed and imple-mented for ALPI-PIAVE accelerators.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP029  
About • Received ※ 18 September 2023 — Revised ※ 10 October 2023 — Accepted ※ 18 December 2023 — Issued ※ 21 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP056 Consolidation of the Power Trigger Controllers of the LHC Beam Dumping System controls, FPGA, network, software 1439
 
  • L. Strobino, N. Magnin, N. Voumard
    European Organization for Nuclear Research (CERN), Geneva, Switzerland
 
  The Power Trigger Controller (PTC) of the LHC Beam Dumping System (LBDS) is in charge of the control and supervision of the Power Trigger Units (PTU), which are used to trigger the conduction of the 50 High-Voltage Pulsed Generators (HVPG) of the LBDS kicker magnets. This card is integrated in an Industrial Control System (ICS) and has the double role of controlling the PTU operating mode and monitoring its status, and of supervising the LBDS triggering and re-triggering systems. As part of the LBDS consolidation during the LHC Long Shutdown 2 (LS2), a new PTC card was designed, based on a System-on-Chip (SoC) implemented in an FPGA. The FPGA contains an ARM Cortex-M3 softcore processor and all the required peripherals to communicate with onboard ADCs and DACs (3rd-party IPs or custom-made ones) as well as with an interchangeable fieldbus communication module, allowing the board to be integrated in various types of industrial control networks in view of future evolution. This new architecture is presented together with the advantages in terms of modularity and reusability for future projects.  
poster icon Poster THPDP056 [3.146 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP056  
About • Received ※ 05 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 15 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP074 Phase-II Upgrade of the CMS Electromagnetic Calorimeter Detector Control and Safety Systems for the High Luminosity Large Hadron Collider detector, controls, software, operation 1516
 
  • R. Jiménez Estupiñán, G. Dissertori, L. Djambazov, N. Härringer, W. Lustermann, K. Stachon
    ETH, Zurich, Switzerland
  • P. Adzic, D. Jovanovic, M. Mijic, P. Milenovic
    University of Belgrade, Belgrade, Republic of Serbia
  • L. Cokic
    CERN, Meyrin, Switzerland
 
  Funding: Swiss National Science Foundation, Switzerland; Ministry of Education, Science and Technological Development, Serbia.
The Electromagnetic Calorimeter (ECAL) is a subdetector of the CMS experiment. Composed of a barrel and two endcaps, ECAL uses lead tungstate scintillating crystals to measure the energy of electrons and photons produced in high-energy collisions at the Large Hadron Collider (LHC). The LHC will undergo a major upgrade during the 2026-2029 period to build the High-Luminosity LHC (HL-LHC). The HL-LHC will allow for physics measurements with one order of magnitude larger luminosity during its Phase-2 operation. The higher luminosity implies a dramatic change of the environmental conditions for the detectors, which will also undergo a significant upgrade. The endcaps will be decommissioned and replaced with a new detector. The barrel will be upgraded with new front-end electronics. A Sniffer system will be installed to analyse the airflow from within the detector. New high voltage and water-cooled, radiation tolerant low voltage power supplies are under development. The ECAL barrel safety system will replace the existing one and the precision temperature monitoring system will be redesigned. From the controls point of view, the final barrel calorimeter will practically be a new detector. The large modification of the underlying hardware and software components will have a considerable impact in the architecture of the detector control system (DCS). In this document the upgrade plans and the preliminary design of the ECAL DCS to ensure reliable and efficient operation during the Phase-2 period are summarized.
 
poster icon Poster THPDP074 [1.906 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP074  
About • Received ※ 05 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 16 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THSDSC01 Sector Focused Cyclotron Power Supply Control System Upgrade controls, hardware, cyclotron, distributed 1578
 
  • X.J. Liu, S. An, Y. Chen, L. Ge, M. Li, J.Q. Wu, W. Zhang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  The old power supply control system of SFC (Sector Focused Cyclotron) has been in operation for more than a decade. Control system architecture is centralized, and equipment failure rate is getting higher and higher. The new control system uses the EPICS architecture, and the hardware uses Advantech’s APAX modules. The IOC runs on the APAX host and interacts with the module through API functions. The system has been running very stable for several months without failure.  
slides icon Slides THSDSC01 [0.510 MB]  
poster icon Poster THSDSC01 [2.136 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THSDSC01  
About • Received ※ 30 September 2023 — Revised ※ 11 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)