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Abstract
Robust and reliable quench detection for superconduct-

ing magnets is increasingly important as facilities push the
boundaries of intensity and operational runtime. RadiaSoft
has been working with Brookhaven National Lab on quench
detection and prediction for superconducting magnets in-
stalled in the RHIC storage rings. This project has analyzed
several years of power supply and beam position monitor
data to train automated classification tools and automated
quench precursor determination based on input sequences.
Classification was performed using supervised multilayer
perceptron and boosted decision tree architectures, while
models of the expected operation of the ring were developed
using a variety of autoencoder architectures. We have con-
tinued efforts to maximize area under the receiver operating
characteristic curve for the multiple classification problem
of real quench, fake quench, and no-quench events. We have
also begun work on long short-term memory (LSTM) and
other recurrent architectures for quench prediction. Exami-
nations of future work utilizing more robust architectures,
such as variational autoencoders and Siamese models, as
well as methods necessary for uncertainty quantification will
be discussed.

INTRODUCTION
Quench protection systems have been in service since the

advent of superconducting magnet technology [1, 2]. In
spite of the long history of quench detection technology,
there has been a continuous effort to improve quench protec-
tion through the 90’s with the construction of the LHC [3,
4] and in the 2000’s with the construction of large detector
magnets such as CMS [5] and the MICE experiment [6]. For
a single magnet, once a quench is detected the power supply
is switched off and then the magnet energy dumped into a
load resister through a cold diode. When concerned with
multiple magnets either bridge circuits or isolation ampli-
fiers are usually considered [7]. For the MICE experiment
for example, the magnet is divided into subdivisions in order
to reduce the impact of a quench in a single subdivision. At
RHIC there are multiple magnets chained together which
introduces additional complexity [8]. In addition to the hard-
ware requirements for protecting the magnet from quench
events, there have been a number of efforts to ensure robust
timing and triggering systems for coordinating the different
quench protection systems and to ensure there is not a dirty
beam dump. At RHIC, specifically, a redundant fiber optic
communications system has been developed and installed to
ensure effective permitting [9].
∗ joshec@radiasoft.net

In addition to refining quench protection systems, quench
detection also remains an area of interest. Traditional quench
detection relies on measurement of the magnet resistance
through the voltage and current delivered by the power sup-
ply. More recently efforts to identify quenches in advance
to take preventative action has led to some interesting devel-
opments. For example, computation of the parasitic capaci-
tance has demonstrated early detection of quench events [10].
Additional efforts have focused on using acoustic sensors to
detect quenches [11]. This method monitors the change in
the magnet’s acoustic transfer function induced by a local
temperature rise or an epoxy crack. In fact, a recent machine
learning effort to detect precursors to magnet quenches using
similar acoustic data has been quite successful [12]. While
these methods show significant promise, much work can be
done to refine the machine learning methods and to integrate
them with operational accelerators. Here we develop tools
for the classification of quench events in the hopes of being
able to detect quench precursors in power supply or BPM
data. We begin with qn overview of our dataset and then
provide details for our quench classification results.

QUENCH DATA AND INITIAL ANALYSIS
The data included in our studies are from two separate

datasets provided by BNL: beam position monitor (BPM)
and power supply (PS). The original data was received as
text files for each device, inside a hierarchy of directories
representing the run, fill number, event type, and ring. The
BPM text files contain timestamped beam position, differ-
ence, and coherence data at 10 kHz for 100 milliseconds
around the event. The PS text files contain timestamped
reference current, current, voltage, and voltage error data at
720 Hz for the 3 seconds leading up to the event and 1 second
after the event. Additionally, Excel files were provided by
BNL that contain information about the events, including
the names of the specific power supply device names that
were involved in reporting a quench event.

Before development of our ML models, it was first neces-
sary to determine the characteristics of the data to determine
the necessity of any additional data pre-processing. This
included detailed investigations of the data itself around
quench events, including gaining an understanding of the
proper data sampling periods, expected signal behavior, and
if there are any sort of label generation methods readily avail-
able. We also performed metadata analyses of the devices
involved in the quenches; histograms of these studies can be
seen in Figures 1 and 2.

Examining individual waveforms, we determined that
quench vs non-quench datasets can be identified with high
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Figure 1: Histogram of reasons a quench occurred.

Figure 2: Histogram of the number of quenches that were
caused by a specific device.

confidence by looking at standard deviations of the wave-
forms; this was used to generate a set of labels for use in
ML applications. These labels provides us with the ability
to verify the performance of our quench detection ML al-
gorithms using a non-machine learning method, while also
allowing for the use of supervised training methods. One
of the more interesting considerations with these datasets
is the inclusion of derived data; the reference current and
error measurements are generally calculated based on other
data, and are not purely recorded observables. This is impor-
tant to keep in mind when looking at dependent variables
and causation as ML models can be trained to find relation-
ships that might not be physically possible. Examples of the
waveforms collected during a quench event can be seen in
Figures 3 and 4.

The text files and Excel files were parsed and converted
into per-run Hierarchical Data Format (HDF5) files [13].
The HDF5 files store the datasets in a similar hierarchy to
the directories they were received in (groups for run, fill
number, event type, and ring), along with additional data
from the Excel files stored as metadata attributes on their as-

Figure 3: Voltage and error signals as measured by power
supplies during a quench event. The data is triggered such
that data before and after a trigger is logged.

Figure 4: Beam position and voltage of a power supply
during a quench event. Notice the beam position oscillating
significantly before the power supply shuts off.

sociated dataset. While generating the HDF5 file, the parser
performs validation checks on each dataset and skips invalid
data. This includes files that contained error messages and
files that contain all zero data. Initial data collection and pre-
processing found a large number of files that were messages
reporting no data available or an error message output from
automated data collection scripts being run at BNL, for ex-
ample. Several iterations of data aggregation was performed
to clan up a majority of these errors, with others handled
by these validation checks. After parsing for valid data, we
were left with 67264 BPM datasets and 32845 PS datasets.
Of these PS datasets, 478 were from devices recorded as
quench events and 32367 were due to non-quench events.
All the datasets that were collected for both BPM and PS
data were due to machine aborts; not every device in every
dataset saw the abort events, outside of machine-wide events
(e.g., facility-wide power disruption).

A Python class called DataManager was created as an
interface to read the data from HDF5 files and return it in
a format to be used as input for machine learning pipelines.
DataManager returns a NumPy array with 3 dimensions
representing the number of datasets, timestamps within the
dataset, and data points at each timestamp, along with an
associated metadata list. The DataManager interface al-
lows for filtering by run, event type, and whether the device
was listed as the Quenched PS for the event in the Excel
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Figure 5: The quench-vs-rest ROC curves for PS (left) and BPM (right) using a BDT.

Figure 6: The quench vs rest ROC curves for BPM using a MLP classifier over a small data slice on the left. On the right, is
quench vs rest ROC curves for PS data using a MLP classifier over the entire dataset.

file. DataManager also provides the labels for each dataset
returned in the array.

This sort of Python module allows for better version con-
trol and consistent operation across multiple users and ex-
periments without as many concerns over reproducibility.

QUENCH CLASSIFICATION

With the application of the DataManager to parse and
organize our datasets into easily managed HDF5 files, we
split datasets by label and used classification algorithms to
reconstruct each dataset. We investigated two main methods
for classification. The first method is a Boosted Decision
Tree (BDT) [14] with regression for both single and multi-
classification for BPM and PS datasets. The second is a

custom developed Multi-Layer Perceptron (MLP) trained on
a slice of the dataset near a quench event.

The BDT defines a set of nodes and leaves to split data
with the goal of maximizing the information gained from
the data or minimizing entropy, where there is a maximum
for a 0.50/0.50 split and minimum for a 1/0 split. The tree
is boosted using the ensemble weight of each misclassified
event for further training. Our PS dataset has 5 distinguish-
able labels: snake, main, rotator, ?, and quench, while
the BPM dataset has 4 distinguishable labels: ps, blm, bpm,
and quench. The BPM dataset has other labels, but they are
indistinguishable from each other, so they are ignored within
the classification.

Receiver operating characteristic (ROC) curves are used
in classification problems as a visual representation of model
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performance, with their area under the curve (AUC) a key
single metric derived from this. ROC curves for the PS and
BPM data that is labeled as quench vs the rest of the dataset,
also known as one-vs-rest, can be seen in Figure 5. The PS
data performs well with a large ROC-AUC of 0.88, which
means there are some distinguishable features within the
data used as input to the model to classify quench events.
The BPM data shows a slightly worse ROC-AUC of 0.72,
but this shows that the model has a decent ability to correctly
classify the given input data as quench events. Both of these
models were trained over a full period, where the quench
event can be clearly seen in input data.

An MLP classification model was also developed to per-
form a similar classification for both the BPM and power
supply data, as the arrangement of fully-connected layers can
often find different sorts of connections between data in train-
ing. The MLP classifier is constructed of fully-connected
layers of sizes [500,200,50,number_of_labels], with the in-
put data flattened. Figure 6 shows the quench-vs-rest ROC
curve using indices [650:850] of the 1024-point input vec-
tor for classification. This shows possible precursors in the
BPM data for quench prediction due to the better than 0.5
ROC-AUC. The data shown on the right of Figure 6 shows a
better ROC-AUC, but is also trained over the entire dataset; a
much higher ROC-AUC is expected given the characteristics
of the data and the BDT results. It is possible that the MLP
classifier issues with the PS data could be due to the need
for different data pre-processing needs, but additional work
still needs to be performed to clarify the reasons for this
performance.

CONCLUSIONS
Our results on quench classification show that there are dis-

tinguishing features that can be used to train either a boosted
decision tree or a neural network to label different types of
quenches. This was accomplished using data collected from
Brookhaven National Laboratory and a collaboration be-
tween RadiaSoft staff and BNL staff. Our methods utilized
both BPM data and power supply data.
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