System Modelling
Feedback Systems & Optimisation
Paper Title Page
MO3AO01 Optimisation of the Touschek Lifetime in Synchrotron Light Sources Using Badger 108
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, L. Hoummi, D. Lacoste, A. Le Meillour, T.P. Perron, S.M. White
    ESRF, Grenoble, France
  • I.V. Agapov, M. Böse, J. Keil, L. Malina, E.S.H. Musa, B. Veglia
    DESY, Hamburg, Germany
  • A.L. Edelen, P. Raimondi, R.J. Roussel, Z. Zhang
    SLAC, Menlo Park, California, USA
  • T. Hellert
    LBNL, Berkeley, California, USA
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871072
Badger* is a software designed to easily access several optimizers (simplex, RCDS**, bayesian optimization, etc.) to solve a given multidimensional minimization/maximization task. The Badger software is very flexible and easy to adapt to different facilities. In the framework of the EURIZON European project Badger was used for the EBS and PETRAIII storage rings interfacing with the Tango and TINE control system. Among other tests, the optimisations of Touschek lifetime was performed and compared with the results obtained with existing tools during machine dedicated times.
* Z. Zhang et al., "Badger: The Missing Optimizer in ACR", doi:10.18429/JACoW-IPAC2022-TUPOST058
** X. Huang, "Robust simplex algorithm for online optimization", 10.1103/PhysRevAccelBeams.21.104601
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO01  
About • Received ※ 28 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 27 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3AO02 Implementation of Model Predictive Control for Slow Orbit Feedback Control in MAX IV Accelerators Using PyTango Framework 116
 
  • C. Takahashi, J. Breunlin, Á. Freitas, M. Sjöström
    MAX IV Laboratory, Lund University, Lund, Sweden
  • P. Giselsson, E. Jensen Gassheld, M. Karlsson
    Lund University, Lund, Sweden
 
  Achieving low emittance and high brightness in modern light sources requires stable beams, which are commonly achieved through feedback solutions. The MAX IV light source has two feedback systems, Fast Orbit Feedback (FOFB) and Slow Orbit Feedback (SOFB), operating in overlapping frequency regions. Currently in MAX IV, a general feedback device implemented in PyTango is used for slow orbit and trajectory correction, but an MPC controller for the beam orbit has been proposed to improve system robustness. The controller uses iterative optimisation of the system model, current measurements, dynamic states and system constraints to calculate changes in the controlled variables. The new device implements the MPC model according to the beam orbit response matrix, subscribes to change events on all beam position attributes and updates the control signal given to the slow magnets with a 10 Hz rate. This project aims to improve system robustness and reduce actuator saturation. The use of PyTango simplifies the implementation of the MPC controller by allowing access to high-level optimisation and control packages. This project will contribute to the development of a high-quality feedback control system for MAX IV accelerators.  
slides icon Slides MO3AO02 [4.234 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO02  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3AO03 Commissioning and Optimization of the SIRIUS Fast Orbit Feedback 123
 
  • D.O. Tavares, M.S. Aguiar, F.H. Cardoso, E.P. Coelho, G.R. Cruz, A.F. Giachero, L. Lin, S.R. Marques, A.C.S. Oliveira, G.S. Ramirez, É.N. Rolim, L.M. Russo, F.H. de Sá
    LNLS, Campinas, Brazil
 
  The Sirius Fast Orbit Feedback System (FOFB) entered operation for users in November 2022. The system design aimed at minimizing the overall feedback loop delay, understood as the main performance bottleneck in typical FOFB systems. Driven by this goal, the loop update rate was chosen as high as possible, real-time processing was entirely done in FPGAs, BPMs and corrector power supplies were tightly integrated to the feedback controllers in MicroTCA crates, a small number of BPMs was included in the feedback loop and a dedicated network engine was used. These choices targeted a disturbance rejection crossover frequency of 1 kHz. To deal with the DC currents that build up in the fast orbit corrector power supplies, a method to transfer the DC control effort to the Slow Orbit Feedback System (SOFB) running in parallel was implemented. This contribution gives a brief overview of the system architecture and modelling, and reports on its commissioning, system identification and feedback loop optimization during its first year of operation.  
slides icon Slides MO3AO03 [78.397 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO03  
About • Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 03 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3AO04 Modelling and Control of a MeerKAT Antenna 131
 
  • I.A. Dodia
    SARAO, Cape Town, South Africa
 
  This paper presents a comprehensive approach to modeling for control system design for a MeerKAT antenna. It focuses on dynamic modeling using time and frequency domain techniques, and lays the foundation for the design of a control system to meet the telescope’s stringent pointing and tracking requirements. The paper scope includes rigid body modelling of the antenna, system identification to obtain model parameters, and building a system model in Simulink. The Simulink model allows us to compare model performance with the measured antenna pointing, under various environmental conditions. The paper also integrates models for pointing disturbances, such as wind and friction. The integrated model is compared to the existing control setup. Wind disturbance plays a significant role in the pointing performance of the antenna, therefore the focus is placed on developing an appropriate wind model. This research will conclude by providing a well-documented, systematic control system design that is owned by SARAO and can be implemented to improve the pointing performance of the telescope.  
slides icon Slides MO3AO04 [6.441 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO04  
About • Received ※ 06 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 18 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3AO05 Path to Ignition at National Ignition Facility (NIF): The Role of the Automated Alignment System 138
 
  • B.P. Patel, A.A.S. Awwal, M. Fedorov, R.R. Leach Jr., R.R. Lowe-Webb, V.J. Miller Kamm, P.K. Singh
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The historical breakthrough experiment at the National Ignition Facility (NIF) produced fusion ignition in a laboratory for the first time and made headlines around the world. This achievement was the result of decades of research, thousands of people, and hardware and software systems that rivaled the complexity of anything built before. The NIF laser Automatic Alignment (AA) system has played a major role in this accomplishment. Each high yield shot in the NIF laser system requires all 192 laser beams to arrive at the target within 30 picoseconds and be aligned within 50 microns-half the diameter of human hair-all with the correct wavelength and energy. AA makes it possible to align and fire the 192 NIF laser beams efficiently and reliably several times a day. AA is built on multiple layers of complex calculations and algorithms that implement data and image analysis to position optical devices in the beam path in a highly accurate and repeatable manner through the controlled movement of about 66,000 control points. The system was designed to have minimum or no human intervention. This paper will describe AA’s evolution, its role in ignition, and future modernization.
LLNL Release Number: LLNL-ABS-847783
 
slides icon Slides MO3AO05 [10.417 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO05  
About • Received ※ 22 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 05 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3AO06 Energy Consumption Optimisation by Using Advanced Control Algorithms 145
 
  • F. Ghawash, E. Blanco Viñuela, B. Schofield
    CERN, Meyrin, Switzerland
 
  Large industries operate energy-intensive equipment and energy efficiency is an important objective when trying to optimize the final energy consumption. CERN utilizes a large amount of electrical energy to run its accelerators, detectors and test facilities, with a total yearly consumption of 1.3 TWh and peaks of about 200 MW. Final energy consumption reduction can be achieved by dedicated technical solutions and advanced automation technologies, especially those based on optimization algorithms, have revealed a crucial role not only in keeping the processes within required safety and operational conditions but also in incorporating financial factors. MBPC (Model-Based Predictive Control) is a feedback control algorithm which can naturally integrate the capability of achieving reduced energy consumption when including economic factors in the optimization formulation. This paper reports on the experience gathered when applying non-linear MBPC to some of the contributors to the electricity bill at CERN: the cooling and ventilation plants (i.e. cooling towers, chillers, and air handling units). Simulation results with cooling towers showed significant performance improvements and energy savings close to 20% over conventional heuristic solutions. The control problem formulation, the control strategy validation using a digital twin and the initial results in a real industrial plant are reported together with the experience gained implementing the algorithm in industrial controllers.  
slides icon Slides MO3AO06 [3.101 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO06  
About • Received ※ 04 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 29 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3AO07 Control Design Optimisations of Robots for the Maintenance and Inspection of Particle Accelerators 153
 
  • A. Díaz Rosales, M. Di Castro, H. Gamper
    CERN, Meyrin, Switzerland
 
  Automated maintenance and inspection systems have become increasingly important over the last decade for the availability of the accelerators at CERN. This is mainly due to improvements in robotic perception, control and cognition and especially because of the rapid advancement in artificial intelligence. The robotic service at CERN performed the first interventions in 2014 with robotic solutions from external companies. However, it soon became clear that a customized platform needed to be developed in order to satisfy the needs and in order to efficiently navigate through the cluttered, semi-structured environment. This led to the formation of a robotic fleet of about 20 different robotic systems that are currently active at CERN. In order to increase the efficiency and robustness of robotic platforms for future accelerators it is necessary to consider robotic interventions at the early design phase of such machines. Task specific solutions tailored to the specific needs can then be designed, which in general show higher efficiency than multipurpose industrial robotic systems. This paper presents current advances in the design and development of task specific robotic system for maintenance and inspection in particle accelerators, taking the 100 km long Future Circular Collider main tunnel as a use case. The requirements on such a robotic system, including the applied control strategies, are shown, as well as the optimization of the topology and geometry of the robotic system itself.  
slides icon Slides MO3AO07 [3.560 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO07  
About • Received ※ 29 September 2023 — Revised ※ 10 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 26 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO16 Research and Development of the Fast Orbit Feedback System for HEPS 386
 
  • P. Zhu, Y.C. He, D.P. Jin, Y.L. Zhang
    IHEP, Beijing, People’s Republic of China
  • Z. Lei
    CSNS, dongguan, People’s Republic of China
  • Z. Lei
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • D.Y. Wang
    DNSC, Dongguan, People’s Republic of China
  • Z.X. Xie
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  The Fast Orbit Feedback (FOFB) system plays a critical role on the beam orbit stability in the storage ring of the High Energy Photon Source (HEPS), which is a fourth-generation diffraction-limited synchrotron radiation source, under construction in Beijing at present. Based on the latest development of FOFB systems, this paper addresses the design and implementation of the hardware and software, including the design of the dual-loop link, the architecture of sub-station hardware, the data transmission and feedback logic, and so on. The total latency is minimized to achieve an overall closed-loop bandwidth of 500Hz.  
slides icon Slides TUMBCMO16 [1.656 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO16  
About • Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 24 November 2023 — Issued ※ 11 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP004 System Identification via ARX Model and Control Design for a Granite Bench at Sirius/LNLS 479
 
  • J.P.S. Furtado, I.E. Santos, T.R. Silva Soares
    LNLS, Campinas, Brazil
 
  Modern 4th generation synchrotron facilities demand mechanical systems and hardware capable of fine position control, improving the performance of experiments at the beamlines. In this context, granite benches are widely used to position systems such as optical elements and magnetos, due to its capacity of insulating interferences from the ground. This work aims to identify the transfer function that describes the motion of the granite bench at the EMA Beamline (Extreme conditions Methods of Analysis) and then design the control gains to reach an acceptable motion performance in the simulation environment before embedding the configuration into the real system, followed by the validation at the beamline. This improvement avoids undesired behaviour in the hardware or in the mechanism when designing the controller. The bench, weighting 1.2 tons, is responsible by carrying a coil, weighting 1.8 tons, which objective is to apply a 3 T magnetic field to the sample that receives the beam provided by the electrons accelerator. The system identification method applied in this paper is based on the auto-regressive model with exogenous inputs (ARX). The standard servo control loop of the Omron Delta Tau Power Brick controller and the identified plant were simulated in Simulink in order find the control parameters. This paper shows the results and comparison of the simulations and the final validation of the hardware performance over the real system.  
poster icon Poster TUPDP004 [0.720 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP004  
About • Received ※ 06 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 17 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP006 System Identification Embedded in a Hardware-Based Control System with CompactRIO 489
 
  • T.R. Silva Soares, J.L. Brito Neto, J.P.S. Furtado, R.R. Geraldes
    LNLS, Campinas, Brazil
 
  The development of innovative model-based design high bandwidth mechatronic systems with stringent performance specifications has become ubiquitous at LNLS-Sirius beamlines. To achieve such unprecedent specifications, closed loop control architecture must be implemented in a fast, flexible and reliable platform such as NI CompactRIO (cRIO) controller that combines FPGA and real-time capabilities. The design phase and life-cycle management of such mechatronics systems heavily depends on high quality experimental data either to enable rapid prototyping, or even to implement continuous improvement process during operation. This work aims to present and compare different techniques to stimulus signal generation approaching Schroeder phasing and Tukey windowing for better crest factor, signal-to-noise ratio, minimum mechatronic stress, and plant identification. Also show the LabVIEW implementation to enable embeddeding this framework that requires specific signal synchronization and processing on the main application containing a hardware-based control architecture, increasing system diagnostic and maintenance ability. Finally, experimental results from the High-Dynamic Double-Crystal Monochromator (HD-DCM-Lite) of QUATI (quick absorption spectroscopy) and SAPUCAIA (small-angle scattering) beamlines and from the High-Dynamic Cryogenic Sample Stage from SAPOTI (multi-analytical X-ray technique) of CARNAÚBA beamline are also presented in this paper.  
poster icon Poster TUPDP006 [0.766 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP006  
About • Received ※ 06 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP030 Integration of an Optimizer Framework into the Control System at KARA 570
 
  • C. Xu, E. Blomley, A.-S. Müller, A. Santamaria Garcia
    KIT, Karlsruhe, Germany
  • M. Zhang
    PU, Princeton, New Jersey, USA
 
  Tuning particle accelerators is not straightforward, as they depend on a large number of non-linearly correlated parameters that, for example, drift over time. In recent years advanced numerical optimization tools have been developed to assist human operators in tuning tasks. A proper interface between the optimizers and the control system will encourage their daily use by the accelerator operators. In this contribution, we present our latest progress in integrating an optimizer framework into the control system of the KARA storage ring at KIT, allowing the automatic tuning methods to be applied for routine tasks.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP030  
About • Received ※ 06 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 10 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP086 Operational Tool for Automatic Setup of Controlled Longitudinal Emittance Blow-Up in the CERN SPS 723
 
  • N. Bruchon, I. Karpov, N. Madysa, G. Papotti, D. Quartullo
    CERN, Meyrin, Switzerland
 
  The controlled longitudinal emittance blow-up is necessary to ensure the stability of high-intensity LHC-type beams in the CERN SPS. It consists of diffusing the particles in the bunch core by injecting a bandwidth-limited noise into the beam phase loop of the main 200 MHz RF system. Obtaining the correct amplitude and bandwidth of this noise signal is non-trivial, and it may be tedious and time-demanding if done manually. An automatic approach was developed to speed up the determination of optimal settings. The problem complexity is reduced by splitting the blow-up into multiple sub-intervals for which the noise parameters are optimized by observing the longitudinal profiles at the end of each sub-interval. The derived bunch lengths are used to determine the objective function which measures the error with respect to the requirements. The sub-intervals are tackled sequentially. The optimization moves to the next one only when the previous sub-interval is completed. The proposed tool is integrated into the CERN generic optimization framework that features pre-implemented optimization algorithms. Both single- and multi-bunch high-intensity beams are quickly and efficiently stabilized by the optimizer, used so far in high-intensity studies. A possible extension to Bayesian optimization is being investigated.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP086  
About • Received ※ 05 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 19 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP132 Temperature Control of Crystal Optics for Ultrahigh-Resolution Applications 899
 
  • K.J. Gofron
    ORNL, Oak Ridge, Tennessee, USA
  • Y.Q. Cai, D.S. Coburn, A. Suvorov
    BNL, Upton, New York, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Science, Scientific User Facilities Division under Contract No. DE-AC05-00OR22725
The temperature control of crystal optics is critical for ultrahigh resolution applications such as those used in meV-resolved Inelastic Scattering. Due to the low count rate and long acquisition time of these experiments, for 1-meV energy resolution, the absolute temperature stability of the crystal optics must be maintained below 4 mK to ensure the required stability of lattice constant, thereby ensuring the energy stability of the optics. Furthermore, the temperature control with sub-mK precision enables setting the absolute temperature of individual crystal, making it possible to align the reflection energy of each crystal’s rocking curve in sub-meV resolution thereby maximizing the combined efficiency of the crystal optics. In this contribution, we report the details of an EPICS control system using PT1000 sensors, Keithley 3706A 7.5 digits sensor scanner, and Wiener MPOD LV power supply for the analyzer crystals of the Inelastic X-ray Scattering (IXS) beamline 10-ID at NSLS-II**. We were able to achieve absolute temperature stability below 1 mK and sub-meV energy alignment for several asymmetrically cut analyzer crystals. The EPICS ePID record was used for the control of the power supplies based on the PT1000 sensor input that was read with 7.5 digits accuracy from the Keithley 3706A scanner. The system enhances the performance of the meV-resolved IXS spectrometer with currently a 1.4 meV total energy resolution and unprecedented spectral sharpness for studies of atomic dynamics in a broad range of materials.
 
poster icon Poster TUPDP132 [0.809 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP132  
About • Received ※ 28 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 30 November 2023 — Issued ※ 10 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP139 The Pointing Stabilization Algorithm for the Coherent Electron Cooling Laser Transport at RHIC 913
 
  • L.K. Nguyen
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Coherent electron cooling (CeC) is a novel cooling technique being studied in the Relativistic Heavy Ion Collider (RHIC) as a candidate for strong hadron cooling in the Electron-Ion Collider (EIC). The electron beam used for cooling is generated by laser light illuminating a photocathode after that light has traveled approximately 40 m from the laser output. This propagation is facilitated by three independent optical tables that move relative to one another in response to changes in time of day, weather, and season. The alignment drifts induced by these environmental changes, if left uncorrected, eventually render the electron beam useless for cooling. They are therefore mitigated by an active "slow" pointing stabilization system found along the length of the transport, copied from the system that transversely stabilized the Low Energy RHIC electron Cooling (LEReC) laser beam during the 2020 and 2021 RHIC runs. However, the system-specific optical configuration and laser operating conditions of the CeC experiment required an adapted algorithm to address inadequate beam position data and achieve greater dynamic range. The resulting algorithm was successfully demonstrated during the 2022 run of the CeC experiment and will continue to stabilize the laser transport for the upcoming run. A summary of the algorithm is provided.
 
poster icon Poster TUPDP139 [2.129 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP139  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 08 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)