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Abstract
Modern 4th generation synchrotron facilities demand

mechatronic systems capable of fine position control, im-
proving the performance of experiments at the Beamlines.
In this context, granite benches are widely used to position
systems such as optical elements and magnetos, due to its
capacity of isolating interferences from the ground. This
work aims to identify the transfer function that describes
the motion of the granite bench at the EMA Beamline (Ex-
treme con-ditions Methods of Analysis) and then design the
control gains to reach an acceptable motion performance in
the simulation environment before embedding the configu-
ration into the real system, followed by the validation at the
beamline. This improvement avoids undesired behaviour
in the hardware or in the mechanism when designing the
controller. The bench, weighting 1.2 tons, is responsible
by carrying a coil, weighting 1.8 tons, which objective is
to apply a 3 T magnetic field to the sample that receives
the beam provided by the electrons accelerator. The system
identification method applied in this paper is based on the
auto-regressive model with exogenous inputs (ARX). The
standard servo control loop of the Omron Delta Tau Power
Brick controller and the identified plant were simulated in
Simulink in order to find the control parameters. This paper
shows the results and comparison of the simulations and the
final validation of the hardware performance over the real
system.

INTRODUCTION
The main theme of this work is the identification and con-

troller design of a granite bench present in the Brazilian
Synchrotron Light Laboratory (LNLS) [1], the 4th gener-
ation particles accelerator in the Brazilian Center for Re-
search in Energy and Materials (CNPEM). The objective is
to provide an effective method to identify the behavior of the
granite bench responsible by positioning a coil that produces
a magnetic field of extreme conditions for the scientific ex-
periments that happen in this beamline [2]. In addition to
that, the controller must be designed to move the system in a
stable manner. The feedback transfer function model should
be the same as the one present inside the Power Brick LV,
commonly known as PBLV [3].

Figure 1 shows the coil responsible by providing the
magnetic field under extreme conditions, essential for several
kinds of experiments that happen inside the EMA Beam-
line. As mentioned in the last section, the coil weights 1.2
tons, while the bench [4], responsible by carrying the coil,
∗ Work supported by the Ministry of Science, Technology and Innovation.
† joao.furtado@lnls.br

weights 1.8 tons – it is the biggest of the whole laboratory,
between all Beamlines in operation. The design of a good
stabilizing controller is essential to guarantee the success of
the experiments, as the bench must be kept stopped during
the process (acquisitions during incident beams), and also
move in a safe manner in order to preserve the integrity of
the whole mechanism.

Figure 1: Coil responsible by providing the magnetic field
under extreme conditions.

The plant identification was done considering the black
box approach [5], and this box encompasses both electrical
and mechanical systems present in the granite bench: the
operational amplifier, present in the PBLV power output, and
the motor coupled to a belt and pulley subassy that provides
the translation of the bench and controls the position of the
magnetic coil. The identification was done using the ARX
model [6], and the excitation signal was a smooth ramp in
reference to the controller, in closed-loop mode.

The controllers tuning – in terms of gains, such as pro-
portional, integrative, derivative, etc. [7] – are usually done
in an empirical manner. So the main contribution of this
work is to identify and design the controller of the system in
order to have the performance evaluated even before embed-
ding the gains inside the PBLV. This avoids the possibility
to damage the system, by bringing rough movements to the
granite bench or amplifiers burnout by over-current. Also,
it is possible to test and validate different controllers setups
and gains configurations – due to the simulation environment
that applies the identified plant –, helping to find the best
performance in terms of transient and stationary stability.

EXPECTATIONS
The main expectation of this work is to provide a method

to find control gains in order to stabilize critical systems,
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such as the granite bench at the EMA Beamline – one of
the most critical granite benches due to the weight of the
scientific equipment that it carries. Guaranteeing a stable
movement in terms of transient and stationary motion is
ubiquitous to preserve the integrity of the mechanism. Also,
the development of a methodology to tune the controller
responsible by guaranteeing such unprecedented safety ap-
plications is essential when dealing with critical scientific
equipment, as the validation in the simulations environment
avoids the test of gains that belong to a specific numeric
range that can be dangerous to the system.

HARDWARE AND SIGNALS
Before going to the system identification method and the

mathematical studies, it is essential to understand the hard-
ware and the signals involved in the granite bench motion.
As mentioned before, the system involves several dynamic
components and non-linearities – such as the friction, the
pneumatic system responsible by floating the granite block,
the belt elasticity and backlashes on the gears coupling –,
turning the identification even more challenging. The mech-
anism is the one shown in Fig. 2. Note the main function
of the motor, controlled by PBLV, is to provide a pure trans-
lation over the X kinematic axis – in the coordinate system
of the laboratory [8] –, which is perpendicular to the beam
direction (parallel with the Z axis).

Figure 2: General assembly: bench, belt, motor and pulley.

The identification is based on the discrete time, due to
two principal factors:

• The PBLV controller performs the calculations and
data extraction in a discrete manner, under a frequency
configured by the user [9]. In this work, the acquisition
rate is equal to the loop rate, fixed in 16 kHz.

• The model is the auto-regressive of exogenous inputs
(ARX), which theoretical basement is described in the
next section.

As mentioned before, there are more elements to be iden-
tified in the system than only the behavior of the granite
block. There is the electrical plant of current conversion, the

cabling behavior and the mechanical system of the motor.
Aiming to simplify the problem and the approach, all these
elements – including their non-linearities, approximated to
a linear system – will be identified in two black boxes, as it
is assumed that there is no information available about the
dynamic that rules the behavior of each subsystem of the
general assembly.

First of all, the PBLV has a standardized mesh that returns
a value – that will be called in this work as servo out, which
is similar to the name of the register of this output, to be
acquired in the PBLV. The mesh has a lot of gains and filters,
but in this work the following ones will be implemented:

• Proportional gain (Kp).

• Integral gain (Ki).

• Feedback velocity gain (Kvfb).

• Feedback acceleration gain (Kafb).

• Feedforward velocity gain (Kvff).

• Feedforward acceleration gain (Kaff).

In a summarized way, the block diagram that represents
the system is the one present in Fig. 3.

Figure 3: Resumed block diagram of the system.

In this approach, the element responsible for generating
the control effort is the servo out, which is the output of the
controller shown in Fig. 3. This variable was interpreted,
in this analysis, as a non-dimensional one. The servo out
feeds the current amplifier, responsible by generating two
currents (𝐼𝑎[𝑘] and (𝐼𝑏[𝑘]). Both currents can be acquired
inside PBLV using specific registers in the k-th instant. This
is the first transfer function that is identified, turning the
servo out into the two currents. Despite the current controller
is available in the PBLV user manual, it will be interpreted in
this work as a black box as well, as the electronic components
inside the amplifier and their oscillations are unknown. It is
important to note that the ARX model is a SISO one – so it
converts a single input to a single output. In order to meet
this model, the currents 𝐼𝑎[𝑘] and (𝐼𝑏[𝑘] must be reduced to
a single variable that can represent both.

Inside the PBLV and the motor, the two currents have 90º
between each other. The general amplitude is configurable
by the user using the native PBLV code, and this relation
is inserted inside the current loop. The general amplitude –
which will be called as 𝐼𝑔 – keeps the following relation the
same during all motion:

√𝐼𝑎[𝑘]2 + 𝐼𝑏[𝑘]2 = 𝐼𝑔 (1)
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By acquiring the two currents, it is possible to build an
complex current 𝐼[𝑘] – in which 𝑗 is the imaginary unit –
that has the following format in the k-th instant:

𝐼[𝑘] = 𝐼𝑎[𝑘] + 𝑗 ⋅ 𝐼𝑏[𝑘] (2)

Note the modulus of 𝐼[𝑘] is equal to 𝐼𝑔, ∀𝑘 > 0. In the
k-th instant, it is possible to build an extra variable – which
will be called in this work as electric angle –, which can be
represented by the following relation:

𝜑[𝑘] = 𝑡𝑎𝑛−1 𝐼𝑏[𝑘]
𝐼𝑎[𝑘] (3)

It is possible to identify the first transfer function from
the servo out to the electric angle (which is a representation
of the two currents, as their modulus is always the same).
Also, it is possible to identify the second transfer function
from the electric angle to the position of the granite bench
(reported by a encoder with resolution of 500 nm).

IDENTIFICATION MODEL
In this section, a brief bibliographic review of the ARX

model [10] will be presented in order to simplify the analysis
and identification using acquired data in the PBLV – as
Matlab already has functions that automatically perform the
identification using this model [11]. Remember that two
transfer functions are meant to be identified: the current
amplifier and the bench mechanism.

Model Format
The auto-regressive model with exogenous inputs can be

expressed by the following generic transfer function: (as-
suming the noise and external disturbances are nule and have
no influence on the output)

𝑦[𝑘] = 𝐵(𝑞)
𝐴(𝑞)𝑢[𝑘] (4)

In this format, 𝐴(𝑞) and 𝐵(𝑞) are functions in the domain
of the delay operator 𝑞. This operator has the following
property:

𝑢[𝑘]𝑞−𝑛 = 𝑢[𝑘 − 𝑛] (5)

The functions 𝐴(𝑞) and 𝐵(𝑞) are, respectively, the de-
nominator and the numerator of the transfer function that
is meant to be identified. Indeed, they have the following
format:

𝐴(𝑞) = 1 − 𝑎1𝑞−1 − 𝑎2𝑞−2 − ... − 𝑎𝑚𝑞−𝑚 (6)

𝐵𝑞 = 𝑏1𝑞−1 + 𝑏2𝑞−2 + ... + 𝑏𝑛𝑞−𝑛 (7)

Note the functions 𝐴(𝑞) and 𝐵(𝑞) have orders 𝑚 and 𝑛,
respectively. Their coefficients are meant to be calculated
during the system identification process.

Parameters Estimation
To cover a calculation example of the parameters estima-

tion, Let it be assumed that 𝑚 = 2 and 𝑛 = 1). Then:

𝐴(𝑞) = 1 − 𝑎1𝑞−1 − 𝑎2𝑞−2 (8)

𝑏𝑞 = 𝑏1𝑞−1 (9)

Bringing the delay operator to the discrete time, the rela-
tions turn into:

𝑦[𝑘] = 𝑎1𝑦[𝑘 − 1] + 𝑎2𝑦[𝑘 − 2] + 𝑏1𝑢[𝑘 − 1] (10)

In a practical way, this equation represents a causality
between the input and the output, as it depends only on past
values. For example: in the instants 𝑘 = 3 and 𝑘 = 4, the
relation is, respectively:

𝑦[3] = 𝑎1𝑦[2] + 𝑎2𝑦[1] + 𝑏1𝑢[2] (11)

𝑦[4] = 𝑎1𝑦[3] + 𝑎2𝑦[2] + 𝑏1𝑢[3] (12)

The identification by the application of the ARX model
must find the coefficients 𝑎1, 𝑎2 and 𝑏2 that represent as
good as possible the behavior of the plant. If the last relation
is extrapolated to a set of 𝑁 samples, starting by 𝑘 = 3, it
can be written in a matrix form:

𝑦[3, 4, ..., 𝑁] =
⎡
⎢⎢⎢⎢
⎣

𝑦[2] 𝑦[1] 𝑢[2]
𝑦[3] 𝑦[2] 𝑢[3]

...
...

...
𝑦[𝑁 − 2] 𝑦[𝑁 − 1] 𝑢[𝑁 − 2]

⎤
⎥⎥⎥⎥
⎦

⎡⎢⎢
⎣

𝑎1
𝑎2
𝑏1

⎤⎥⎥
⎦

(13)
In which 𝑦 and 𝑢 are data acquired by the controller. The

relation can be expressed by:

𝑦 = ΨΘ (14)

In which Ψ is called regressors matrix and Θ is the vector
of coefficients to be determined. Note this relation represents
a linear system of equations. If the regressors matrix was
square, it would be easy to find the coefficients vector by the
following inversion:

Θ = Ψ−1𝑦 (15)

But, as this work deals with a large set of data, the re-
gressors matrix is not square and not invertible. To properly
find the coefficients vector, the pseudo-inverse matrix is
necessary: (in which Ψ′ is the transpose of the matrix Ψ)

Θ = [(Ψ′Ψ)]−1Ψ′𝑦 (16)

Otherwise, it is not possible to apply the chosen model
to represent the transfer functions of this work. The cal-
culation of the vector Θ returns the estimated parameters
𝑎1, 𝑎2 and 𝑏1 that represent the behavior of the system as
close as possible to its real dynamics. That is because the
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calculation using the pseudo-inverse is a linear approxima-
tion using minimum squares, a statistic conception based on
mathematical optimization that finds the best adjustment for
a set of data by minimizing the sum of the squares of the
differences between the estimated and real values.

EXPERIMENTAL METHODOLOGY
The system identification using the ARX model, as ex-

plained before, is based on collecting a set of excitation and
response data – using the acquisition panel of the PBLV
integrated development environment (IDE) –, saving in a
readable format, bring into Matlab and use its native com-
mands to find the transfer functions. Note the experiment
demands a movement to be applied in the system in order to
collect the data to be post-processed in Matlab. The typical
movement applied in the experimental hutch is a S-curve,
and as specified by the mechanical design, the curve must
have the configurations listed in Table 1.

Table 1: Margin Specifications

Motion Configuration Value

Acceleration time 8000 ms
Final velocity 2 counts/ms

By zeroing all gains of the motor – except the proportional
gain, kept in a low value 𝐾𝑝 = 5 ⋅ 10−4 – and configuring
the reference to follow the mentioned curve, it is possible to
acquire the set of data (excitation and feedback). Note this
represents a smooth movement and can be interpreted as an
acquisition specifically for system identification.

SYSTEM IDENTIFICATION: RESULTS
As mentioned before, a smooth movement under weak

controller conditions is necessary to run the system identi-
fication method. A set of acquired data at these conditions
is expressed in Fig. 4. It is important to note that this ac-
quisition was done using the gather window of the PBLV
integrated development environment (IDE) at the same rate
of the servo controller (fixed in 16 kHz). The gathered data
then can be exported to a .txt format, which can be read and
interpreted by another post-processing application – such
as Matlab and Simulink, the chosen ones to run the system
identification procedures of the auto-regressive models.

Bringing the data to Matlab, it is possible to calculate the
electric angle between A and B phases of the motor, using
the relation based on the tangent inverse shown before. The
result is expressed in Fig. 5.

By having the acquired data imported into Matlab, it is
possible to run the native calculations of the ARX model
in order to obtain the estimated transfer functions and, then,
run the simulations using Simulink. For the next sections,
let 𝐺(𝑧) be the transfer function that turns the servo out into
electric angle. Also, let 𝑉(𝑧) be the transfer function that
turns the electric angle into position.

Figure 4: Collected data for granite bench system identifica-
tion.

Figure 5: Electric angle calculation, from currents acquired.

CONTROLLER DESIGN
By having the discrete transfer functions 𝐺(𝑧) and 𝑉(𝑧)

that represent the closest behavior to the real dynamic of the
system, it is possible to embed them into a Simulink model –
together with the standard controller structure that is natively
implemented inside the PBLV – and, then, simulate the
expected performance when configuring determined control
gains.

The model to be inserted into a Simulink structure is the
one present in the Fig. 6. Note the identified transfer func-
tions using the ARX model appear right after the controller
main structure. This simulation must be done in discrete
time – always having on mind the configured servo loop rate,
in this specific case, was set up to 16 kHz, and the resolution
is 500 nm per encoder count.

The configuration presented in Table 2 shall be tested.
This configuration was found after several tests with dif-
ferent combinations of gains. The comparison brings the
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Figure 6: Controller standard structure inside PBLV to be
simulated in Simulink.

conclusion that this is the best solution – although there may
be other untested solutions. Also, the integral gain was not
added because it does not matter if the error during the sta-
tionary velocity is brought to zero – it can be controlled in
the neighbors of a value. The main objective here is to bring
the mechanism from one point to another in a smooth way,
and the error in the final destination must be set to zero.

Table 2: Configuration of Controller to Be Embedded Into
PBLV (Gains and Respective Registers and Values)

Gain Value

Proportional 0.0008
Integral 0
Velocity feedback 0
Acceleration feedback 0
Velocity feedforward 4.8
Acceleration feedforward 0

By simulating the configuration present in Table 1 and
Table 2, together with the block diagram present in Fig. 6 us-
ing Simulink, and plotting some key variables, the expected
performance is the one shown in Fig. 7.

Note the expected performance, as mentioned before, is
smooth, as the following error does not seem to have rough
movements during the motion from one point to another.

RESULTS
The next step, after fully designing the controller and

verifying its expected performance, is to embed the gains
to PBLV and verifying the real behavior. The acquisition in
closed-loop is the one present in Fig. 8, after commanding
the motor under the same reference setup of the Table 1
and the Table 2. It is possible to realize that the observed
behavior is close to the simulated one.

CONCLUSION
This work presented a mathematical model and a method-

ology that describes the behavior of a granite bench of the
new Brazilian Synchrotron Light source. The model was
obtained through the parametrical identification that applies

Figure 7: Expected results after controller design. Simula-
tion done using Simulink.

Figure 8: Acquired results after embedding controller into
PBLV and commanding the motor.

auto-regressive models with exogenous inputs, and it was im-
portant to anticipate possible components of the real system,
even before embedding the controller gains into the hard-
ware. This procedure allowed the team to test the control
system in a wider way, avoiding the application of deter-
mined gains that could damage or overcharging the system.
The comparison between the experimental model and the
observed practical results has put on evidence the efficacy
and the importance of the proposed methodology.
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