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Abstract
Modern 4th generation synchrotron facilities demand mechatronic systems capable of fine position control, improving the performance of experiments at the 

Beamlines. In this context, granite benches are widely used to position systems such as optical elements and magnetos, due to its capacity of 

isolating interferences from the ground. This work aims to identify the transfer function that describes the motion of the granite bench at the EMA Beamline 

(Extreme conditions Methods of Analysis) and then design the control gains to reach an acceptable motion performance in the simulation environment before 

embedding the configuration into the real system, followed by the validation at the beamline. This improvement avoids undesired behaviour in the hardware or 

in the mechanism when designing the controller. The bench, weighting 1.2 tons, is responsible by carrying a coil, weighting 1.8 tons, which objective is to apply 

a 3 T magnetic field to the sample that receives the beam provided by the electrons accelerator. The system identification method applied in this paper is based 

on the auto-regressive model with exogenous inputs (ARX). The standard servo control loop of the Omron Delta Tau Power Brick controller and the identified 

plant were simulated in Simulink in order to find the control parameters. This paper shows the results and comparison of the simulations and the final validation 

of the hardware performance over the real system.

Expectations
The main expectation of this work is to 

provide a method to find control gains in 

order to stabilize critical systems, such as 

the granite bench at the EMA Beamline – 

one of the most critical granite benches due 

to the weight of the scientific equipment 

that it carries. Guaranteeing a stable 

movement in terms of transient and 

stationary motion is ubiquitous to preserve 

the integrity of the mechanism. Also, the 

development of a methodology to tune the 

controller responsible by guaranteeing such 

unprecedent safety applications is essential 

when dealing with critical scientific 

equipment, as the validation in the 

simulations environment avoids the test of 

gains that belong to a specific numeric 

range that can be dangerous to the system. 

Hardware and Signals
In a summarized way, the block diagram 

that represents the system is:

Inside the PBLV and the motor, the two 

currents have 90º between each other. 

The general amplitude is configurable 

by the user using the native PBLV** 

code. The general amplitude – which 

will be called as 𝐼𝑔 – keeps the 

following relation the same during all 

motion:

𝐼𝑎[𝑘]2 + 𝐼𝑏[𝑘]2 = 𝐼𝑔

By acquiring the two currents, it is 

possible to build an complex current 

𝐼[𝑘] – in which 𝑗 is the imaginary unit – 

that has the following format in the k-th 

instant:

𝐼 𝑘 =  𝐼𝑎 𝑘 + 𝑗 ∙ 𝐼𝑏[𝑘]

Note the modulus of 𝐼[𝑘] is equal to 𝐼𝑔, 

∀𝑘 > 0. In the k-th instant, it is possible 

to build an extra variable – which will 

be called in this work as electric angle –

, which can be represented by the 

following relation:

𝜑 𝑘 = tan−1
𝐼𝑏[𝑘]

𝐼𝑎[𝑘]

Identification: ARX Model
The autoregressive model with exogenous inputs 

can be expressed by the following generic transfer 

function:

𝑦 𝑘 =
𝐵[𝑞]

𝐴[𝑞]
𝑢 𝑘

Indeed, they have the following format:

𝐴 𝑞 = 1 − 𝑎1𝑞−1 − 𝑎2𝑞−2 − ⋯ − 𝑎𝑚 𝑞−𝑚

𝐵 𝑞 = 𝑏1𝑞−1 + 𝑏2𝑞−2 + ⋯ + 𝑏𝑛 𝑞−𝑛

Note the functions 𝐴(𝑞) and 𝐵(𝑞) have orders 𝑚 

and 𝑛, respectively. Their coefficients are meant to 

be estimated. Also, the operator 𝑞 representes a 

delay:

𝑢 𝑘 𝑞−𝑛 = 𝑢[𝑘 − 𝑛]

Identification: parameters estimation
To cover a calculation example of the parameters 

estimation, let it be assumed that 𝑚 = 2 and 𝑛 = 1. 

Then:

𝐴 𝑞 = 1 − 𝑎1𝑞−1 − 𝑎2𝑞−2

𝐵 𝑞 = 𝑏1𝑞−1

Bringing the delay operator to the discrete time, the 

relations turn into:

𝑦 𝑘 = 𝑎1𝑦 𝑘 − 1 + 𝑎2𝑦 𝑘 − 2 + 𝑏1𝑢[𝑘 − 1]

This equation represents a causality between the 

input and the output, as it depends only on past 

values. For example: in the instants 𝑘 = 3 and 𝑘 =
4, the relation is, respectively:

𝑦 3 = 𝑎1𝑦 2 + 𝑎2𝑦 1 + 𝑏1𝑢[2]
𝑦 4 = 𝑎1𝑦 3 + 𝑎2𝑦 2 + 𝑏1𝑢[3]

The identification by the application of the ARX 

model must find the coefficients 𝑎1, 𝑎2 and 𝑏1 that 

represent as good as possible the behavior of the 

plant. If the last relation is extrapolated to a set of 𝑁 

samples, starting by 𝑘 = 3, it can be written in a 

matrix form:

𝑦[3,4, … , 𝑁] =

𝑦[2] 𝑦[1] 𝑢[2]
𝑦[3] 𝑦[2] 𝑢[3]

⋮ ⋮ ⋮
𝑦[𝑁 − 1] 𝑦[𝑁 − 2] 𝑢[𝑁 − 1]

𝑎1

𝑎2

𝑏1

In which 𝑦  and 𝑢  are data acquired by the 

controller. The relation can be expressed by:

𝑦 =𝛹𝛩

In which 𝛹 is called regressors matrix and 𝛩 is the 

vector of coefficients to be determined. To properly 

find the coefficients vector, the pseudo-inverse 

matrix is necessary: (in which 𝛹′ is the transpose of 

the matrix 𝛹)

𝛩 = (𝛹′𝛹)−1𝛹′𝑦

Experiment
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Figure 1: Representation of system (hardware + 
eletromechanical).

Figure 2: Experiment to collect data: currents, servoOut and feedback.

Apply a smooth movement
using controller’s IDE

Controller design

Collect data and bring to
Matlab

System identification via 
ARX model (automatic
function provided by

Matlab)

Bring controller and
identified plants to Simulink

Test several gains and
choose the best

Simulation with best gains
found in Simulink
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** PBLV: Power Brick LV Controller, 

the hardware responsible by

controlling the bench. 

Figure 3: Block diagram containing controller and identified plants.

Figure 4: Simulated results after controller design. Figure 5: Real acquired results.

Embed gains into PBLV


