

Control Design Optimisations of Robots for the Maintenance and Inspection of Particle Accelerators

Alejandro DIAZ ROSALES

Hannes GAMPER

Mario DI CASTRO

ICALEPCS23, 7-13 October 2023, Cape Town, Paper MO3AO07

Main needs for robotics at CERN

➢ Inspection, operation and maintenance of radioactive particle accelerators devices for **safety, maintainability, reliability and availability increase**

- ✓ **Experimental areas and objects not built to be remote handled/inspected**
	- ✓ Any intervention may lead to "**surprises"**
	- ✓ Several risks, including **contamination**

The LHC tunnel

North Area experimental zone Radioactive sample handled by a robot

Main difficulties for robotics at CERN

➢**Harsh and semi-structured environments, accessibility** ➢**Radiation, magnetic disturbances**, delicate equipment not designed for robots, big distances, communication, time for the intervention, highly skilled people often required (non robotic operators), etc.

The Robotic Service at CERN: Overview of robots pool

Telemax robot

Teodor robot

Train Inspection Monorail (CERN made)

EXTRM robot (CERN controls)

More than 20 robots (custom made and/or industrial with custom controls) are in operation. Mechatronics conceptions, designs, proof of concepts, prototyping, series productions, operations, maintenance, tools and procedures

CERNBot in different configurations (CERN made)

The Robotic Service at CERN

Robotics technologies are mainly used for:

- ➢ Remote maintenance
- ➢ Human intervention procedures preparation
- Quality assurance
- Post-mortem analysis
- **Reconnaissance**
- Search and rescue
- ➢ And more…

Robots integrated within accelerator facilities

More info on Tuesday minioral and poster session (paper TUMBCMO25)


```
3x ISOLDE / MEDICIS high payload industrial robots
```


Robotics Interventions

- ➢ More than **1000 robotic operations** over the last 8 years
- ➢ More than **1500 hours of in-situ robotic operations**
- ➢ Strong machine **availability boost** thanks to planned and unplanned/emergency missions
- ✓ Continuing developing **best practices** for equipment design and robotic intervention procedures and tools including recovery scenarios

SPS MKP oilers refill

Remote radioprotection surveys

Cabling status inspection

Temperature sensor installation on AD target

Tunnel structure monitoring

Remote Vacuum Leak detection

The equivalent number of human interventions saved with robotic interventions assuming maximum annual exposure

Suitable robots for Big Science Facilities

BEAMS

- ➢No single existing solution can fulfill different the needs ➢Mobility and manipulation capabilities are required
	- ✓ A "fusion" of several type of robot would be needed
	- ✓ **A modular robot could fulfill several needs**

MODULAR

SOFTWARE

Requirement or remote maintenance: **Be strong while stay gentle**

TOPOLOGY AND **CONTROL DESIGN OPTIMIZATIONS**

Robot Topology Design Optimizations

- Main general requirements when optimizing a robotic solution
	- \checkmark Accessibility/compliance with environment
	- Supervised or fully Autonomous Interventions.
	- Detect Hazards.
	- **Robust Control.**
	- Low Maintenance.

 $\mathbf{u}\mathbf{b}(\mathbf{x}, \mathbf{p}) \leq 0$

 \leq

 $\mathbf{lb}(\mathbf{x}, \mathbf{p})$

- Reliable/Redundant Power Supply.
- ✓ Intuitive Human-Robot Interface (HRI).
- Dexterity in Maneuverability.
- ➢ Novel algorithm for **simultaneous optimization** of **topology** and **geometry**
	- ✓ p contains the N **links length** ✓ x contains the **point** of interest to **reach** min $J(\mathbf{x}, \mathbf{p})$ s.t. $f(x, p) - z_d$ Constraint to ensures that the desired end position will be reached $=$ $-c(x, p)$ \leq $\bf{0}$

Constraint for collision avoidance

Constraints for mechanical joint limits

 X, D

Controls Optimization Are Essential for Physical Interaction

- \triangleright Main difference between a robot and a computer is a physical action
- ➢ In robotics → dealing not only with information technology but with **"interaction" technology**
	- ✓ Physical interaction (e.g. human-robot interaction) that should be threated with specific robotic controls
	- ✓ Compliant robotics controls (**shared controls**, **haptics, perception, proprioception etc**.)
	- \checkmark Compliant mechanics, soft materials etc.

Control Strategies: from standard teleoperation to shared controls

- ➢ Improve operation efficiency by moving from **standard teleoperation controls** (unilateral and bilateral) to supervised autonomy
- \triangleright The control of the robot must be able to adapt to what the human operator believes is pertinent → **Shared Controls**

Bilateral teleoperation

Communication

Shared Controls

Simplified architecture of the different systems involved in the control of the robots

Shared Controls

➢ **Semi-Autonomous Control (SAC)**

- ✓ **Parallel autonomy**
	- ❑ Involves both human operators and autonomous controllers concurrently controlling separate variables

Image-based visual servoing system using ML

Parallel autonomy: Variable Impedance Control

➢ **Adapts the contact forces to the task characteristics**

 \checkmark Imitation on how we/humans naturally adjust the stiffness of our muscles when we interact with objects that have varying rigidity.

 $F = M\ddot{x} + D\dot{x} + Kx + f + s$

Mass-spring dumper model for the variable impedance

The impedance can be adapted to the task characteristics.

- Compliant robot for delicate tasks. ٠
- Stiff robot for high precision tasks. ٠

Case Study #1: FCC Robot Design

Requirements

Maintenance

Requirement studies **Requirement studies** Christian Schoology and topology and topology Topology optimization results and device realization

Case Study #2: RF cavity inner surface visual inspection BEAMS

➢ The optimal design of the inspection arm gives the starting point for the mechanical design of the robotic system.

The operation requirement/environment of the cavity inspection robot

The optimal topology and geometry of the cavity inspection arm after applying the model pruning technique

The mechanical design of the robotic arm and its realization based on the optimized design space

Height [m]

 -0.15

Case Study #2: RF cavity inner surface visual inspection BEAMS

RF cavity inspection test bench

Autofocus on image of the cavity iris welding. Size: 1 x 1 cm taken at 23 mm distance

Robotic am inside the cavity

Conclusions

- Significant impact of Industry 4.0 technologies, specifically robotics, on improving maintenance and inspection in challenging environments such as those found in particle accelerators
- By considering robotic interventions during the early design phase of new machines, we can optimize solutions to meet the specific requirements of complex environments
- ➢ To fulfil challenging needs for remote maintenance and quality assurance, robots topology and kinematics designs can be optimized thanks to the proposed work
- ➢ This proactive strategy not only ensures higher efficiency but also contributes to the safety and availability in harsh environment

Many colleagues contributed to the robotic activities during the last years …. Lots of students (TRNEE, TECH, DOCT)

Robots and robotic instrumentation need a crew to use them and maintain and experts in-house to be effective

https://indico.cern.ch/event/1055745/ "If you have an apple and I have an apple and we exchange these apples then you and I will still each have one apple. But if you have an idea and I have an idea and we exchange these ideas, then each of us will have two ideas."

George Bernard Shaw

More on : Academic training lectures on robotics,

Mario.Di.Castro@cern.ch

www.cern.ch