JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for TUPDP004: System Identification via ARX Model and Control Design for a Granite Bench at Sirius/LNLS

TY  - CONF
AU  - Furtado, J.P.S.
AU  - Santos, I.E.
AU  - Silva Soares, T.R.
ED  - Schaa, Volker RW
ED  - Götz, Andy
ED  - Venter, Johan
ED  - White, Karen
ED  - Robichon, Marie
ED  - Rowland, Vivienne
TI  - System Identification via ARX Model and Control Design for a Granite Bench at Sirius/LNLS
J2  - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023
CY  - Cape Town, South Africa
T2  - International Conference on Accelerator and Large Experimental Physics Control Systems
T3  - 19
LA  - english
AB  - Modern 4th generation synchrotron facilities demand mechanical systems and hardware capable of fine position control, improving the performance of experiments at the beamlines. In this context, granite benches are widely used to position systems such as optical elements and magnetos, due to its capacity of insulating interferences from the ground. This work aims to identify the transfer function that describes the motion of the granite bench at the EMA Beamline (Extreme conditions Methods of Analysis) and then design the control gains to reach an acceptable motion performance in the simulation environment before embedding the configuration into the real system, followed by the validation at the beamline. This improvement avoids undesired behaviour in the hardware or in the mechanism when designing the controller. The bench, weighting 1.2 tons, is responsible by carrying a coil, weighting 1.8 tons, which objective is to apply a 3 T magnetic field to the sample that receives the beam provided by the electrons accelerator. The system identification method applied in this paper is based on the auto-regressive model with exogenous inputs (ARX). The standard servo control loop of the Omron Delta Tau Power Brick controller and the identified plant were simulated in Simulink in order find the control parameters. This paper shows the results and comparison of the simulations and the final validation of the hardware performance over the real system. 
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 479
EP  - 484
KW  - controls
KW  - experiment
KW  - simulation
KW  - feedback
KW  - acceleration
DA  - 2024/02
PY  - 2024
SN  - 2226-0358
SN  - 978-3-95450-238-7
DO  - doi:10.18429/JACoW-ICALEPCS2023-TUPDP004
UR  - https://jacow.org/icalepcs2023/papers/tupdp004.pdf
ER  -