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• The accelerator complex at the MAX IV laboratory consists of a 3 GeV, 
250 m long full energy linac, two storage rings of 1.5 GeV and 3 GeV 
and a Short Pulse Facility.
• Transverse stability of the beam is commonly achieved via feedback 

solutions with various different implementations.
• At the MAX IV light source, there are two separate feedbacks working 

together in two different, but overlapping frequency regions and sets 
of sensors. 
• The Fast Orbit Feedback has 10 kHz repetition rate and attenuates 

noise up to 50 – 150 Hz in the most critical regions.
• The Slow Orbit Feedback is implemented in software over a distributed 

control system and should work with a rate up to 10Hz.

Storage Rings at MAX IV
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Corrector Magnets are 
Controlled with ITest BiLT BE2811 
Power Supplies

• The power supplies are interfaced 
in TANGO.

• They are fast enough to operate in 
10Hz.

• There are 380 power supplies in 
the 3GeV ring (200 in the 
horizontal plan and 180 in the 
vertical plane)

• There are 72 power supplies in 
the 1.5GeV ring (36 in each plane)
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Beam Position 
Measurements from 
Libera Brillance+

Corrector Magnets are 
Controlled with ITest BiLT BE2811 
Power Supplies

• The BPMs are interfaced 
in TANGO so the beam 
positions in both planes 
are available as attributes.

• The attributes push 
events at the 10 Hz rate of 
the “slow” Libera data 
acquisition stream.

• There are 2 × 200 BPMs in 
the 3GeV ring.

• There are 2 × 36 BPMs in 
the 1.5GeV ring.

• The power supplies are interfaced 
in TANGO.

• They are fast enough to operate in 
10Hz.

• There are 380 power supplies in 
the 3GeV ring (200 in the 
horizontal plan and 180 in the 
vertical plane)

• There are 72 power supplies in 
the 1.5GeV ring (36 in each plane)
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• Corrector magnets are easily saturated, for both the Slow and Fast Orbit 
FeedBack control systems.
• When some of the the corrector magnets of the SOFB system are satured it 

can be hard to bring the feedback control system into operation again.
• The BPM sensor readout have particular transient dynamics, in which it takes 

around 4 or 5 steps, around 0.5s for the sensor to reach the expected value.
• The Fast corrector magnets, have a shorter operational range, thus the SOFB 

should help the with the offloading of the FOFB system.
• Compensation of energy shifts can be achieved by adjusting the RF, which 

should also be managed by the SOFB system for an optimal solution.

Issues and Requirements
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INTRODUCTION

Optimal Control for Constrained Dynamic Systems
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states, disturbances, and current and 
future control signals. 

• In each step, the optimization problem 
to minimize the cost function for the 
control signal is solved so that 
constraints on states and control 
actions are satisfied.

• One of the big advantages of MPC is 
that the controller handles constraints 
which can be physical limits or safety 
limits on states and control signals. 
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• Saturation is an issue for both the Fast Orbit FeedBack fast correctors 
and the Slow Orbit FeedBack slow correctors.
• The Fast Correctors should optimally be working in the middle of its 

operational range.
• A mid-ranging design was in implemented to offload the strain on the 

FOFB system.
• The reference value of the MPC is adjusted to match the middle of the 

rage which the FOFB is working.
• This offloading occurs every 5s.

Mid-ranging Interaction with FOFB
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Tango Device

IMPLEMENTATION

SOFB MPC implementation using PyTango Framework
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Device Server

• The device server was implemented using 
in Python using PyTango framework for 
distributed control systems.

• The Do-MPC library was used for the MPC 
implementation.

• The interaction with the device can be 
done through Tango’s standard GUIs, Jive 
and Atk Panel.

• Aditionaly it is possible to interact with 
the device using PyTango Client API in 
Python or its Matlab binding.

SOFTWARE & ACCELERATOR 
DEVELOPMENT
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• Software & Accelerator 
Development

State Handling
• The device transitions to STANDBY 

when all required cofigurations are 
finished. The status states which 
configurations are missing.

• When on ON state, the controller 
calculates the constrol signal but 
does not update the MPC state 
neither apply the control signal to 
the actuators. 

• On MOVING, MPC states are updated 
and the control signal is applied.

• Issues with read out rates, invalid 
sensor readings will cause controller 
to go to a reversible ALARM state.

• Issues with external interlock and 
sensors or actuators faults will cause 
device to go to FAULT state, which 
require human intervention.

20



• The sensors event handling 
was inherited from the 
previously implemented orbit 
controller and it runs on a 
separated thread from the 
main control loop.

• For each event that arrives 
from a sensor, the timestamp 
and value for that sensor is 
updated and the spread in the 
timestamps is calculated.

• Once all events are within a 
tolerance time range, the 
sensor signal input can be 
considered for the next MPC 
step.

Sensor Events

SOFTWARE & ACCELERATOR 
DEVELOPMENT21



Tests on Storage Ring

RESULTS 

Tests on 3GeV Ring
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• When the MPC, started  the 
initial overshoot was around 
200 µm.

• Sensor constraints were not 
defined during this test.

• On start, actuators had a kick 
but stabilized, this is more 
evident if we remove the signal 
mean.

• The FOFB was started, which 
introduced some noise.

• The actuation level remained 
stable
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the overshoot was significantly 
smaller.

R3 Tests

24



• When the MPC was started with 
the sensors near the setpoint, 
the overshoot was significantly 
smaller.

• The actuators kick is barely 
noticiable in this case, but it is 
possibel to see the chages 
around the operational mean 
values.

R3 Tests

24



• When the MPC was started with 
the sensors near the setpoint, 
the overshoot was significantly 
smaller.

• The actuators kick is barely 
noticiable in this case, but it is 
possibel to see the chages 
around the operational mean 
values.

R3 Tests

24



• When the MPC was started with 
the sensors near the setpoint, 
the overshoot was significantly 
smaller.

• The actuators kick is barely 
noticiable in this case, but it is 
possibel to see the chages 
around the operational mean 
values.

• When the FOFB was started the 
noise was introduced.

R3 Tests
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• The slow correctors are working closer to saturation, but do not 
saturate.
• The controller can recover the orbit from a unwanted position without 

saturating the correctors.
• Mid-ranging implementation of the FOFB for the MPC controller was a 

challenge. Since the error of the FOFB system was considered at 
defined intervals, the states predicted by the MPC would have a higher 
error during offloading.

Conclusions
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• The  model can incorporate sensor readout delays, to allow shorter 
control cycles and increase prediction horizon.
• Improve initial guess by incorparating current actuator readouts.
• Improve sensor and control signal variation constraints.
• Known disturbances can be incorporated to the MPC controller to 

improve states predictions and increase prediction horizon.

Future Work
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Thank you!
Contact info:
carla.takahashi@maxiv.lu.se
magnus.sjostrom@maxiv.lu.se
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