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Abstract
Large industries operate energy-intensive equipment with

energy efficiency now an important objective to optimize
overall energy consumption. CERN, the European Labora-
tory for Particle Physics, uses a large amount of electrical
energy to run its accelerator complex, with a total yearly
consumption of 1.3 TWh and peak usage of up to about
200 MW. Energy consumption reduction can be achieved
through technical solutions and advanced automation tech-
nologies. Optimization algorithms, in particular, have a
crucial role not only in keeping the processes running within
the required safety and operational conditions, but also in
optimising the financial factors at play. Model-based Pre-
dictive Control (MPC) is a feedback control algorithm that
naturally integrates the capability of achieving reduced en-
ergy consumption when including economic factors in the
optimization formulation. This paper reports on the expe-
rience gathered when applying non-linear MPC on one of
the contributors to the electricity bill at CERN: the cooling
and ventilation plants (i.e. cooling towers, chillers, and air
handling units). Simulation results on cooling tower con-
trol showed significant performance improvements, and en-
ergy savings close to 20 %, when compared to conventional
heuristic solutions. The control problem formulation, the
control strategy validation using a digital twin and the initial
results in a real industrial plant are reported here, together
with the experience gained implementing the algorithm in
industrial controllers.

INTRODUCTION
Environmental concerns together with rising energy

prices are bringing energy consumption into focus across
society as a whole. At CERN, there has been considerable
effort recently to reduce energy consumption, which cur-
rently stands at roughly 1.3 TWh per year. Ideally, energy
consumption reduction would be realized without impacting
the operation of the accelerator complex and experiments.
One attractive means to achieve this, which typically also
requires minimal capital expenditure, is to improve control
algorithms. In many cases, control algorithms are developed
with focus on aspects such as performance or robustness.
Optimization of energy usage is often not considered at the
design stage. Furthermore, controllers in an industrial con-
text are almost always designed using a setpoint-tracking
paradigm, and generally implemented using Proportional-
Integral-Derivative (PID) controllers. However, there are
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numerous applications in which such a paradigm may be
unnecessary, and may lead to unwanted excess energy con-
sumption. Many such examples can be found in cooling and
ventilation applications such as cooling towers and building
HVAC systems. In these cases the control objective is al-
most always to keep process values (such as temperature and
humidity) within a range of acceptable values, rather than
at one specific setpoint. Using a classical setpoint-tracking
approach here can lead to unwanted energy consumption
by forcing the system to this (somewhat artificial) specific
setpoint. At CERN, cooling and ventilation applications
account for a considerable proportion of electrical consump-
tion (66 GWh in 2019). More widely, studies indicate that
in developed countries, energy consumption in buildings
accounts for roughly a third of total energy consumption [1].
Improving control systems for these applications could there-
fore enable considerable energy savings. For these types
of processes, it would be desirable to design a controller
which ensures that process values are kept within their de-
sired ranges, but which does not use excessive control effort
to drive them to a specific setpoint. It would also be de-
sirable if the control formulation could explicitly include
the minimization of energy consumption as a control objec-
tive. MPC is a control design approach which allows this
to be accomplished. By setting up a cost function which
can contain both control objectives as well as energy or eco-
nomic costs, and by including constraints, which in these
applications is a more natural way of expressing the control
objective, it is possible to formulate an optimization prob-
lem. By repeatedly solving this problem over a fixed, finite
time horizon, controller output values can be obtained. In
order to predict future process values over the time horizon,
a model of the system is required. In this article, the prin-
ciple of MPC will be introduced. A case study of an Air
Handling Unit (AHU) will be considered. The derivation of
a simple control-oriented process model will be presented,
and a model predictive controller will be formulated. The
validation of the controller using a process simulator (virtual
commissioning) will be discussed. Finally, the results of
applying the model predictive controller will be presented,
with the focus on achievable energy savings.

MODEL PREDICTIVE CONTROL
MPC uses a dynamic model of the process within a finite-

horizon optimization problem to determine a set of control
inputs. Only the first of these control inputs are applied
to the plant, and the optimization problem is solved again
in the next time step. This iterative approach provides the
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feedback necessary to deal with disturbances and model
mismatch. As it is based on solving an optimization problem,
the approach is very broad, as many possible optimization
problems could be posed for a given control problem. The
approach is directly applicable to multivariable systems, with
many measurements and actuators, and constraints can be
taken into account explicitly.

The key challenges with designing a model predictive
controller are the development of the model, and the formu-
lation of the optimization problem. The class of optimization
problem that results dictates the type of solver that must be
used.

Receding Horizon Control
The core behaviour of MPC, namely iteratively solving

a finite horizon optimization problem, is sometimes called
Receding Horizon control, as the finite horizon continually
advances at each new time step. The principle is illustrated
in Fig. 1. Although the core feature of the MPC scheme is

...

Figure 1: Receding horizon control principle [2]. At each
sample time, new measurements are taken and the problem is
solved again. Only the first of the computed control outputs
are applied to the process.

the use of a dynamic plant model to enable prediction of
future output, it is important to note that the scheme is very
well suited to situations in which future values of other plant
information, such as external inputs or disturbances, are
known or can be predicted. In the case of AHUs, one such
external input is the outside air temperature, a prediction for
which can be reliably obtained from meteorological services.

Open vs Closed Loop
A subtle but important aspect of MPC is that it does not

produce a control law, as in a feedback rule to apply to the
outputs or states of the process, but rather simply a sequence
of control inputs over the control horizon. This is essentially
an open loop control signal. Feedback is achieved through
the iterative nature of the strategy.

MODELING OF AIR HANDLING UNITS
In this section, simple control orientated models of the

different components of an AHU will be derived, primarily
based on mass and energy balances. For more details about
the model derivation see [3].

Air Handling Unit
Figure 2 illustrates the structure of the air handling unit

considered in this article. The unit contains a variable speed
fan, heating and cooling coils, and dampers to control the
airflow. The aim of the AHU is to maintain the air temper-
ature in the zone, and to provide a certain amount of fresh
air from the exterior of the building in order to maintain air
quality.

Exhaust Air

Outside Air
Toa

Return Air
Tra

Cooled Air
Tca

Cooling CoilHeaterFilter

Heated
Air Tha

Return Air Damper
dra

Outside Air Damper 
doa

Fan

ZoneMixed Air
Tma

Supply Air Tsa

Figure 2: Air Handling Unit.

Zone Model
The zone air temperature mainly depends on the supply

temperature from the AHU, outside air temperature and the
heat load on the building, which is typically time varying.
Assuming the air in the zone is fully mixed and the density
of the air remains constant, the zone energy balance leads
to (1). Similar models have been reported in [4–6].

𝐶𝑧
𝑑𝑇𝑧𝑎
𝑑𝑡 =�̇�𝑖𝑛

𝑠𝑎𝐶𝑝𝑎𝑇𝑠𝑎 − �̇�𝑜𝑢𝑡
𝑠𝑎 𝐶𝑝𝑎𝑇𝑧𝑎 + 𝛼(𝑇𝑜𝑎 − 𝑇𝑧𝑎) + 𝑞(𝑡)

(1)

Here 𝐶𝑧 represents the zone thermal capacitance. 𝑇𝑧𝑎, 𝑇𝑠𝑎,
𝑇𝑜𝑎 are the zone, supply and outside air temperature respec-
tively. 𝐶𝑝𝑎 is the specific heat capacity of air, 𝛼 is the heat
transfer coefficient and 𝑞(𝑡) represents the time varying heat
load. It must be noted that, 𝐶𝑧, 𝛼 and 𝑞(𝑡) must be identified
from operational data. The mass balance for the zone gives
(2).

�̇�𝑖𝑛
𝑠𝑎 = �̇�𝑜𝑢𝑡

𝑠𝑎 (2)

where �̇�𝑖𝑛
𝑠𝑎 and �̇�𝑜𝑢𝑡

𝑠𝑎 represents the mass flow rate of supply
air entering and leaving the zone. Figure 3 shows the zone
model performance compared to operational data.

Dampers and Mixing Chamber Model
In an AHU, dampers play a key role of modulating the

flow of outside air and return into the mixing chamber. The
mixing of the air flows in correct proportions can be used
to regulate the mixed air temperature. Due to the negligible
heat interaction with the surrounding, the mixing process is
assumed to be adiabatic. The energy balance leads to (3).

𝐶𝑚
𝑑𝑇𝑚𝑎

𝑑𝑡 = �̇�𝑜𝑎𝐶𝑝𝑎𝑇𝑜𝑎 + �̇�𝑟𝑎𝐶𝑝𝑎𝑇𝑟𝑎 − �̇�𝑠𝑎𝐶𝑝𝑎𝑇𝑚𝑎 (3)
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Figure 3: Zone model validation.

where 𝐶𝑚 is the mixing chamber thermal capacitance. Under
the steady state conditions (3) simplifies to:

𝑇𝑚𝑎 = �̇�𝑜𝑎𝑇𝑜𝑎 + �̇�𝑟𝑎𝑇𝑟𝑎
�̇�𝑠𝑎

(4)

where 𝑇𝑚𝑎 and 𝑇𝑟𝑎 are mixed and return air temperatures.
�̇�𝑜𝑎 and �̇�𝑟𝑎 represent the mass flow rate of outside and
return air respectively. The mass balance leads to (5).

�̇�𝑠𝑎 = �̇�𝑜𝑎 + �̇�𝑟𝑎 (5)

The outside and return air dampers are usually designed in
a matched configuration and are operated in unison. For
instance, when the outside air damper closes, the return air
damper opens (and vice-versa). The dampers are sized such
that, the decrease in the mass flow rate of one is equally
matched by the increase in the flow of the other. Hence, the
total mass flow rate of supply air roughly remains constant
irrespective of the mixing ratio. Under such an operational
configuration, the mass flow rate of supply air becomes
independent of the dampers’ position and depends only on
the fan speed. The relation can be approximated by the linear
function �̇�𝑠𝑎 = 𝑎0𝜔 + 𝑎1. Under the matched dampers
configuration, (4) can be rewritten as follows:

𝑇𝑚𝑎 = 𝜙(𝑑𝑜𝑎)�̇�𝑠𝑎𝑇𝑜𝑎 + (1 − 𝜙(𝑑𝑜𝑎))�̇�𝑠𝑎𝑇𝑟𝑎
�̇�𝑠𝑎

(6)

where 𝜙(𝑑𝑜𝑎) represents the installed flow characteristics
and 𝑑𝑜𝑎 is the opening of the OA dampers. Note that, 𝜙 and
1 − 𝜙 are the fraction of the mass flow rate of supply air
contributed by the outside and return air dampers respec-
tively. In the case of linear flow characteristics (installed) of
the dampers [4–6], the fraction of the mass flow rate of air
contributed by the damper is proportional to the damper’s
opening (i.e 𝜙 = 𝑑𝑜𝑎). In practice, the dampers exhibit
non-linear flow characteristics. Depending on the type of
the dampers (parallel or opposed blades), the inherent flow
characteristic (𝜙𝑖𝑛ℎ𝑒) of the dampers can be approximated
using a third order polynomial.

𝜙𝑖𝑛ℎ𝑒(𝑑𝑜𝑎) = 𝑏0𝑑3
𝑜𝑎 + 𝑏1𝑑2

𝑜𝑎 + 𝑏2𝑑𝑜𝑎 (7)

It is important to note that, the inherent non-linear flow
characteristics are measured under the laboratory conditions
(i.e with a constant differential pressure across the dampers).
However, when the dampers are installed in the system, the
installed flow characteristics can significantly deviate from
the inherent flow characteristics depending on the authority1

of the dampers. The installed flow characteristics are given
by the following equation [7]:

𝜙 = 𝜙𝑖𝑛ℎ𝑒√
1

(1 − 𝑑𝑎𝑢𝑡ℎ) × 𝜙2
𝑖𝑛ℎ𝑒 + 𝑑𝑎𝑢𝑡ℎ (8)

where 𝑑𝑎𝑢𝑡ℎ denotes the authority of the damper, which must
be estimated from operational data. The performance of the
mixing chamber model against operational data is shown in
Fig. 4.
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Figure 4: Mixing chamber model validation.

Cooling Coil Model
When a supply temperature lower than the mixed air tem-

perature is required, the cooling coil valve is adjusted to
provide adequate cooling of the mixed air. Under suitable
assumptions, the mass and energy balances are used to de-
rive a semi-empirical model of the cooling coil to effectively
represent the dynamics of off coil temperature of the air [8].

𝑑𝑇𝑐𝑎
𝑑𝑡 = −𝑐1�̇�𝑠𝑎(𝑇𝑐𝑎 − 𝑇ℎ𝑎) − 𝑐2�̇�𝑙

𝑠𝑎

1 + ( �̇�𝑠𝑎
�̇�𝑤

)𝑙 (𝑇𝑐𝑎 − 𝑇𝑤) (9)

𝑇𝑐𝑎 and 𝑇𝑤 are the cooled air and chilled water temperature
respectively. 𝑐1, 𝑐2 and 𝑙 are the empirical parameters of the
model. Although, the optimization formulation ignores the
dynamics of the cooling coil, the model can be effectively
utilized in closed loop simulations. The power consumption
associated with the generation of chilled water consumed by
the cooling coils is given by the following equation [4, 5].

𝑃𝑐 =
�̇�𝑠𝑎𝐶𝑝𝑎(𝑇ℎ𝑎 − 𝑇𝑐𝑎)

𝜂𝑐𝐶𝑂𝑃𝑐
(10)

where 𝜂𝑐 is the efficiency of the cooling coil and 𝐶𝑂𝑃𝑐 rep-
resents the coefficient of performance of the cooling plant.
1 The authority of the damper is defined as the pressure drop across the

fully open damper divided by the total pressure drop in the system.
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Heater Model
Depending on the zone heating requirement, a supply air

temperature higher than the mixed air temperature might
be required. This can be achieved by heating the mixed
using an electric heater, or heating coil. In this case study,
a heating coil is used. The modeling follows that outlined
above for the cooling coil. Again, for the MPC formulation,
the heating coil dynamics are not required for the model;
only the energy consumption is considered. This is given
by:

𝑃ℎ =
�̇�𝑠𝑎𝐶𝑝𝑎(𝑇ℎ𝑎 − 𝑇𝑚𝑎)

𝜂ℎ𝐶𝑂𝑃ℎ
(11)

where 𝜂ℎ is the efficiency of the heating coil and 𝐶𝑂𝑃ℎ
represents the coefficient of performance of the heating plant.

Fan Heat Loss Model
When the fan is placed in the path of the airflow, a frac-

tion of the heat generated due to motor losses is absorbed
by the air passing through the motor. The increase in the
temperature of the air can be modeled as follows:

𝑇𝑠𝑎 = 𝑇𝑐𝑎 +
𝛽𝑃𝑓(𝜔)
�̇�𝑠𝑎𝐶𝑝𝑎

(12)

where 𝑇𝑠𝑎 is the supply air temperature, 𝛽 represents the
fraction of heat absorbed by the air. A fairly accurate approx-
imation of fan power consumption can be obtained using a
quadratic polynomial:

𝑃𝑓(𝜔) = 𝑔0𝜔2 + 𝑔1𝜔 + 𝑔2 (13)

FORMULATION OF THE MODEL
PREDICTIVE CONTROLLER

In this section, a non-linear optimization program is for-
mulated which achieves the desired control objectives while
minimizing the total energy consumption of the actuators.

Objectives and Constraints
The main objective is to regulate the zone temperature

within the desired range while minimizing the energy usage
of the actuators. To this end the objective function is con-
structed by summing the power consumption values of the
actuators based on the models presented in the previous sec-
tion. In order to make use of ‘free’ heating or cooling when
available depending on outside temperatures, a quadratic
cost on the deviation from an ideal zone setpoint can be
added. This term can be given a low weight such that it is
dominated by the power consumption terms.

For the constraints, typically only actuator ranges are
given as ‘hard’ constraints. For process variables which
should be controlled in a range, so-called ‘slack’ variables
are used, which provide a margin of error for the process
variable to violate the constraint. These slack variables are
added to the cost function with corresponding large weights.
This approach is taken to avoid infeasibility of the optimiza-
tion problem when process variables exceed the desired
constraints, for example at plant startup.

The cost function of the optimization problem is shown
in (14𝑎), while the constraints are shown in (14𝑏) to (14𝑝)

min
d,𝜔𝜔𝜔,𝜖𝜖𝜖,T

𝑁
∑
𝑘=0

𝑃𝑓(𝜔𝑘) + 𝑃ℎ(𝑇ℎ𝑎
𝑘+1) + 𝑃𝑐(𝑇𝑐𝑎

𝑘+1) + 𝑟𝑠𝑝(𝑇 𝑧𝑎
𝑘 − 𝑇 𝑧𝑎

𝑠𝑝 )2

+ r𝑇𝜖𝜖𝜖2 (14a)
s.t 𝑇 𝑧𝑎

𝑘+1 = 𝑓𝑧𝑎(𝑇 𝑧𝑎
,𝑘 , 𝑇 𝑠𝑎

𝑘 , 𝑇𝑜𝑎
𝑘 , 𝜔𝑘), ∀𝑘 ∈ 𝒦𝑁 (14b)

𝑇𝑚𝑎
𝑘+1 = 𝑓𝑚𝑎(𝑇 𝑧𝑎

𝑘 , 𝑇𝑜𝑎
𝑘 , 𝑑𝑜𝑎

𝑘 ), ∀𝑘 ∈ 𝒦𝑁 (14c)
𝑇𝑐𝑎

𝑘+1 − 𝜖ℎ𝑎 ≤ 𝑇ℎ𝑎
𝑘+1 ≤ 𝑇𝑚𝑎𝑥

ℎ𝑎 + 𝜖ℎ𝑎, ∀𝑘 ∈ 𝒦𝑁 (14d)
𝑇𝑚𝑖𝑛

𝑐𝑎 − 𝜖𝑐𝑎 ≤ 𝑇𝑐𝑎
𝑘+1 ≤ 𝑇ℎ𝑎

𝑘+1 + 𝜖𝑐𝑎, ∀𝑘 ∈ 𝒦𝑁 (14e)
𝑇 𝑠𝑎

𝑘+1 = 𝑓𝑓 𝑎𝑛(𝑇𝑐𝑎
𝑘 ), ∀𝑘 ∈ 𝒦𝑁 (14f)

𝑇𝑚𝑖𝑛
𝑠𝑎 − 𝜖𝑠𝑎 ≤ 𝑇 𝑠𝑎

𝑘+1 ≤ 𝑇𝑚𝑎𝑥
𝑠𝑎 + 𝜖𝑠𝑎, ∀𝑘 ∈ 𝒦𝑁 (14g)

𝑇𝑚𝑖𝑛
𝑧𝑎 − 𝜖𝑧𝑎 ≤ 𝑇 𝑧𝑎

𝑘+1 ≤ 𝑇𝑚𝑎𝑥
𝑧𝑎 + 𝜖𝑧𝑎, ∀𝑘 ∈ 𝒦𝑁 (14h)

𝑑𝑚𝑖𝑛
𝑜𝑎 ≤ 𝑑𝑜𝑎

𝑘 ≤ 𝑑𝑚𝑎𝑥
𝑜𝑎 , ∀𝑘 ∈ 𝒦𝑁 (14i)

𝜔𝑚𝑖𝑛 ≤ 𝜔𝑘 ≤ 𝜔𝑚𝑎𝑥, ∀𝑘 ∈ 𝒦𝑁 (14j)
− ̇𝑑𝑜𝑎 ≤ 𝑑𝑜𝑎

𝑘+1 − 𝑑𝑜𝑎
𝑘 ≤ ̇𝑑𝑜𝑎, ∀𝑘 ∈ 𝒦𝑁 (14k)

− �̇� ≤ 𝜔𝑘+1 − 𝜔𝑘 ≤ �̇�, ∀𝑘 ∈ 𝒦𝑁 (14l)
− ̇𝑇𝑐𝑎 ≤ 𝑇𝑐𝑎

𝑘+1 − 𝑇𝑐𝑎
𝑘 ≤ ̇𝑇𝑐𝑎, ∀𝑘 ∈ 𝒦𝑁 (14m)

− ̇𝑇ℎ𝑎 ≤ 𝑇ℎ𝑎
𝑘+1 − 𝑇ℎ𝑎

𝑘 ≤ ̇𝑇ℎ𝑎, ∀𝑘 ∈ 𝒦𝑁 (14n)
𝑇𝑧𝑎[0] = 𝑇 𝑖𝑛𝑖𝑡

𝑧𝑎 , 𝑇𝑚𝑎[0] = 𝑇 𝑖𝑛𝑖𝑡
𝑚𝑎 , 𝑇ℎ𝑎[0] = 𝑇 𝑖𝑛𝑖𝑡

ℎ𝑎 , (14o)
𝑇𝑐𝑎[0] = 𝑇 𝑖𝑛𝑖𝑡

𝑐𝑎 , 𝜖𝑠𝑎 > 0, 𝜖𝑧𝑎 > 0, r > 0 (14p)

where 𝜖𝜖𝜖 = (𝜖𝑠𝑎, 𝜖𝑧𝑎, 𝜖𝑐𝑎, 𝜖ℎ𝑎) are the slack variables
for the process value constraints, and 𝒦𝑁 = {0, ⋯ , 𝑁}
is the prediction horizon. Here 𝑓𝑧𝑎, 𝑓𝑚𝑎 and 𝑓𝑓 𝑎𝑛 rep-
resent the zone, mixing chamber, and fan models re-
spectively. The minimization is performed over the
vectors of control variables and system states, namely
d = {𝑑𝑜𝑎[0], ⋯ , 𝑑𝑜𝑎[𝑁]}, 𝜔𝜔𝜔 = {𝜔[0], ⋯ , 𝜔[𝑁]}, T =
{𝑇𝑧𝑎[1], ⋯ , 𝑇𝑧𝑎[𝑁+1], 𝑇𝑚𝑎[1], ⋯ , 𝑇𝑚𝑎[𝑁+1], 𝑇ℎ𝑎[1], ⋯ ,
𝑇ℎ𝑎[𝑁 +1], 𝑇𝑐𝑎[1], ⋯ , 𝑇𝑐𝑎[𝑁 +1], 𝑇𝑠𝑎[1], ⋯ , 𝑇𝑠𝑎[𝑁 +1]}.
The equality constraints (14𝑏), (14𝑐), and (14𝑓 ) are used to
ensure that the trajectories of the state variables must evolve
as per the defined models. (14𝑔), (14ℎ), (14𝑖), (14𝑗) rep-
resents the maximum and minimum allowable values for
the supply air temperature, zone temperature, outside air
damper position, and fan speed.

(14𝑘), (14𝑙), (14𝑚), (14𝑛) are used to impose the rate of
change constraints for the actuators. (14𝑜), (14𝑝) represent
the initial conditions of different variables. It must be noted
that 𝑇𝑐𝑎 is the set point for the cooled air temperature. The
set point can be achieved by a local controller by adjusting
the opening of the cooling valve. The constraint of the max-
imum cooling capacity of the cooling coil is imposed as a
lower bound in (14𝑒). Moreover, the upper bound in (14𝑒)
ensures consistency in the cases when no cooling is required.
A similar constraint is imposed for the heating coil in (14𝑑).
Such a formulation can intrinsically take into account dif-
ferent operational modes of the AHU. For example, when
heating is required, the optimization program will choose
the heated air temperature (𝑇ℎ𝑎) to be higher than the mixed
air temperature, while setting the cooled air temperature
(𝑇𝑐𝑎) equal to the heated air temperature. In case cooling
is required, the heated air temperature is set to mixed air
temperature (𝑇𝑚𝑎) while the cooled air temperature (𝑇𝑐𝑎)
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set point is chosen. In free cooling mode, the heater and
cooling valve remain off and the optimization program will
set the heated as well as the cooled air temperature to mixed
air temperature. Hence, the desired supply temperature is
maintained by modulating the damper positions.

IMPLEMENTATION
The optimization problem presented in (14𝑎) to (14𝑝)

constitutes a Nonlinear Programming (NLP) problem. Im-
plementing a solver for this class of problem on an standard
PLC is not realistic, both in terms of performance of the
hardware and the development time required. There exist
controllers which allow the use of higher level languages
and external libraries, but the use of such controllers was
not an option in this pilot project. A review of industrial
solutions for the implementation of advanced controls can
be found in [9].

Solving the MPC Problem
To solve the optimization problem, it was decided to use

CasADi [10] (via its Python interface) with IPOPT [11] as
the solver. Python was chosen as it allows straightforward
implementation of both optimization problem formulation
and the related signal processing and data acquisition. An
additional advantage of Python is its portability. For the pur-
poses of the pilot implementation described here, the choice
of location for running the MPC algorithm was driven pri-
marily by the focus on assessing the stability and robustness
of the control algorithm, rather than the controller’s relia-
bility. Initially it will run on the SCADA server, but can
be moved to the control layer when entering wider scale
operation.

Interfacing With Industrial Controllers
The existing control system is implemented using a pair

of Siemens S7-315 PLCs. It was decided to keep the existing
control logic, and extend it with the possibility of switching
to MPC control. Additional PID controllers were added for
the heating and cooling valve controls, and tracking calcu-
lations implemented to allow seamless transition between
the existing control strategy and MPC. In order to interface
the PLC with the MPC application, OPC UA was used. The
MPC application includes an OPC UA client which reads
process values from the PLC, and writes back actuator com-
mands and local controller setpoints for the fan, dampers and
valves respectively. The PLC monitors the communication
via a watchdog and automatically switches over to the legacy
control scheme if communication is lost. The architecture
of the controls communication is shown in Fig. 5.

Supervision
For the pilot project, it was decided not to expose any

MPC-specific tuning parameters in the supervision system.
Instead, the MPC is parameterized with the same values
as used by the existing control system, including minimum,
maximum and ideal zone setpoints, supply air setpoint limits,

cwe-513-win038

WinCC OA SCADA

PLC
UARX 10001

cfp-2175-
USSR1-401

PLC
UARX 10002

cfp-2175-
USSR1-403

TSPP TSPP

S7 S7

cs-ccr-cvlhc1

cs-ccr-scada001

Model Predictive Controller (Python)

OPC UA

Simatic NET OPC UA server

InternetGPN host

Forecast manager(Python)

Stormglass.io
weather forecast API HTTP

JSON file transfer

Figure 5: Architecture for the pilot deployment. All com-
munication between the PLC and the Python application is
OPC UA.

Figure 6: MPC synoptic in WinCC OA.

and actuator limits. A new synoptic was developed, shown
in Fig. 6, to provide operators with an overview of the signals
provided to and obtained from the MPC application.

VIRTUAL COMMISSIONING USING A
PROCESS SIMULATOR

In order to reliably develop and test the MPC controller,
it was decided to create a process simulator using the multi-
domain modeling and simulation tool EcosimPro. The tool
allows first-principles physical models to be created and sim-
ulated. The model for the AHU in this case study is shown
in Fig. 7. Model parameters were fitted using historical plant
data, and the completed model validated against separate
sets of historical data. The development of the model is
covered in [12].

Models created in EcosimPro can be compiled into exe-
cutables providing a number of possible interfaces, including
Python and OPC UA. For initial validation, the MPC con-
troller was connected directly to the model using the Python
interface. Later, in order to test the integration with the PLC
application, a more complete testbed was set up using PLCs.
In this case, a simulation driver application written in Python
was created to interface the EcosimPro model with the PLCs
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via OPC UA. The MPC application then interfaces to the
PLCs as in the production architecture. A schematic of this
setup is shown in Fig. 8.

Figure 7: AHU model in EcosimPro.

cvw-plcci-s7tia

cvw-ecosim-srv1

WinCC OA SCADA

PLC
UARX 10001

cfp-864-
plcsim3

PLC
UARX 10002

cfp-864-
plcsim4

TSPP TSPP

Simulation Driver (Python)

S7 S7

OPC UA

EcosimPro
Python deck

cs-ccr-pvss5
cs-ccr-pvss16

Model Predictive Controller (Python)

OPC UA

Stormglass.io
weather forecast API

Simatic NET OPC UA server

Internet

HTTP

Figure 8: Architecture of the virtual commissioning system.
The simulation driver and the MPC both communicate with
the PLC via OPC UA. The simulation can be run either in
historic mode, where past weather data used, or in ‘live’
mode based on current conditions.

RESULTS
Comparative Simulation Studies

Before progressing to deployment on the real plant, it
was necessary to demonstrate the likely effectiveness of the
MPC controller in terms of energy efficiency. To do this,
the simulation model was fed with historic data (primarily
outside air temperature) for a selection of 30 day periods,
chosen to cover a wide range of operational conditions. The
MPC controller was applied to the simulation, and the energy
consumption calculated. This was then repeated with the
legacy (cascaded PID) controls. The reason for simulating

the legacy controls rather than using the historic data directly
was to provide a more accurate comparison; in this way any
modelling errors are common to both controllers. The results
of this study are shown in Table 1.

The results indicate that the MPC controller should be
able to achieve energy savings of around 20 % compared
to the existing controller. In fact, it is likely that further
savings could be made by adjusting operational limits. In
the study, the upper and lower bounds of the zone and supply
air temperatures were the same in the MPC and legacy cases.
However, as MPC allows much tighter control around limits,
these limits could be relaxed in order to gain additional
energy savings.

Table 1: Energy Consumption (kWh) Comparison Between
Simulated MPC Control and Actual Controls for a Number
of 30-Day Periods in 2021-2022

Region Energy Consumption
MPC Actual Savings

Summer 3178 4008 20.7 %
Autumn 1185 1557 23.9 %
Spring 942 1064 11.4 %

Operational Results
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Figure 9: MPC in operation, September 2023. Of particular
interest is the use of the fan during night time to reduce the
zone temperature prior to warm days. This is made possible
by the use of weather forecast data in the optimization prob-
lem.

After satisfactorily showing that MPC should be capable
of achieving energy savings as well as good control perfor-
mance in simulation, the deployment of the system on the
process was approved. The building on which the MPC
would be deployed has two AHUs. It was decided to deploy
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MPC on one of them, and to leave the existing controls on
the other AHU. In operation, the MPC behaves as expected,
allowing the zone temperature to change freely within the
accepted range, and then controlling quite aggressively when
it reaches the limits. Operational data from a number of days
in September 2023 is shown in Fig. 9. A key aspect to note
is the use of the fan during nighttime prior to warm days;
this is enabled by the use of weather forecast data. Making
a direct comparison of the energy performance of the MPC
scheme compared to the previous controls is difficult. One
possible comparison is to calculate the cooling power sup-
plied by the AHU, and compare with the power consumed.
This are plotted in Fig. 10, where it can be seen that after
the deployment of the MPC (on September 13th), the power
consumed by the AHU decreases considerably. A portion
of this decrease in energy consumption can be attributed to
changing weather conditions, with cooler outside air temper-
atures after the deployment. To make a further comparison,
it is possible to make the same calculation for the other AHU
operating in the same building. This is shown in Fig. 11.
Here is can be seen that both the supplied cooling power and
consumed power are largely constant. Although there are
some mitigating factors in this comparison, it is clear that
MPC can enable very efficient operation of the AHUs.

2023-08-292023-09-01 2023-09-05 2023-09-09 2023-09-13 2023-09-17 2023-09-21 2023-09-25 2023-09-29

0

20

40

60

80

kW

UARX 10001. MPC from 13th September. Supplied cooling power = (Tra Tsa)Cpama

Supplied cooling power Before MPC: 12933.8 kWh After MPC: 11653.4 kWh
Consumed Power (coil + fan) Before MPC: 3997.7 kWh After MPC: 1159.3 kWh

Figure 10: Calculated supplied cooling power and consumed
power for AHU before and after MPC deployment.
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UARX 10002 (original controls). Supplied cooling power (Tra Tsa)Cpama

Supplied cooling power. Before MPC on 10001: 9764.4 kWh After MPC on 10001: 9782.8 kWh
Consumed Power (coil + fan) Before MPC on 10001: 4559.5 kWh After MPC on 10001: 4250.6 kWh

Figure 11: Calculated supplied cooling power and consumed
power for second AHU with original controls.

CONCLUSION
Although a longer period of data collection from the de-

ployed MPC controller will be required in order to obtain

statistically reliable results on the achieved energy savings,
the initial results, together with the possibility of changing
operation settings thanks to MPC’s tighter control, indicate
that energy savings are indeed to be expected. In this con-
text it should be noted that the existing controller is in fact a
very recent design, and is in turn considerably more efficient
than older control strategies used in a large number of other
AHUs at CERN. For this reason it is likely that MPC could
enable very considerable energy savings if applied to large
numbers of these installations. Although the focus of this
article has been the use of MPC for reduction of energy con-
sumption, it is also the case that MPC can provide superior
controller performance. The existing control system of the
plant presented here exhibits some dynamic issues, linked
to the fact that the setpoint of the outer controller is linked
to the output of the inner controller in the cascade, with
the intention of reducing energy consumption. This leads
to oscillation under certain conditions. The MPC scheme
presented here does not exhibit such behaviour. The time
spent developing the detailed process model was clearly
well invested, as the MPC implementation required essen-
tially no commissioning time when deployed in production.
Thorough testing in the virtual commissioning phase (made
possible by the model), and the perfomance of the model
itself are to thank for this.
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