Keyword: experiment
Paper Title Other Keywords Page
MO2AO01 Facing the Challenges of Experiment Control and Data Management at ESRF-EBS data-acquisition, SRF, GUI, framework 66
 
  • J.M. Meyer, W. De Nolf, S. Debionne, S. Fisher, A. Götz, M. Guijarro, P. Guillou, A. Homs Puron, V. Valls
    ESRF, Grenoble, France
 
  In 2020 the new ESRF-EBS (Ex­tremely Bril­liant Source) took-up op­er­a­tion. With the much higher pho­ton flux, ex­per­i­ments are faster and pro­duce more data. To meet the chal­lenges, a com­plete re­vi­sion of data ac­qui­si­tion, man­age­ment and analy­sis tools was un­der­taken. The re­sult is a suite of ad­vanced soft­ware tools, de­ployed today on more than 30 beam­lines. The main pack­ages are BLISS for ex­per­i­ment con­trol and data ac­qui­si­tion, LIMA2 for high-speed de­tec­tor con­trol, EWOKS for data re­duc­tion and analy­sis work­flows, and Daiquiri the web GUI frame­work. BLISS is pro­grammed in Python, to allow easy se­quence pro­gram­ming for sci­en­tists and easy in­te­gra­tion of sci­en­tific soft­ware. BLISS of­fers: Con­fig­u­ra­tion of hard­ware and ex­per­i­men­tal set-ups, a generic scan­ning en­gine for step-based and con­tin­u­ous data ac­qui­si­tion, live data dis­play, frame­works to han­dle 1D and 2D de­tec­tors, spec­trom­e­ters, mono­chro­ma­tors, dif­frac­tome­ters (HKL) and reg­u­la­tion loops. For de­tec­tors pro­duc­ing very high data rates, data re­duc­tion at the source is im­por­tant. LIMA2 al­lows par­al­lel data pro­cess­ing to add the nec­es­sary com­put­ing power (CPU and GPU) for on­line data re­duc­tion in a flex­i­ble way. The EWOKS work­flow sys­tem can use on­line or of­fline data to au­to­mate data re­duc­tion or analy­sis. Work­flows can run lo­cally or on a com­pute clus­ter, using CPUs or GPUs. Re­sults are saved or fed back to the con­trol sys­tem for dis­play or to adapt the next data ac­qui­si­tion.  
slides icon Slides MO2AO01 [2.766 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO01  
About • Received ※ 03 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO02 A Beamline and Experiment Control System for the SLS 2.0 controls, interface, data-acquisition, EPICS 71
 
  • K. Wakonig, C. Appel, A. Ashton, S. Augustin, M. Holler, I. Usov, J. Wyzula, X. Yao
    PSI, Villigen PSI, Switzerland
 
  The beam­lines of the Swiss Light Source (SLS) pre­dom­i­nantly rely on EPICS stan­dards as their con­trol in­ter­face but in con­trast to many other fa­cil­i­ties, there is up to now no stan­dard­ized user in­ter­fac­ing com­po­nent to or­ches­trate, mon­i­tor and pro­vide feed­back on the data ac­qui­si­tion. As a re­sult, the beam­lines have ei­ther adapted com­mu­nity so­lu­tions or de­vel­oped their own high-level or­ches­tra­tion sys­tem. For the up­grade pro­ject SLS 2.0, a sub-pro­ject was ini­ti­ated to fa­cil­i­tate a uni­fied beam­line and ex­per­i­ment con­trol sys­tem. Dur­ing a pilot phase and a first de­vel­op­ment cycle, li­braries of the Bluesky pro­ject were used, com­bined with ad­di­tional in-house de­vel­oped ser­vices, and em­bed­ded in a ser­vice-based ap­proach with a mes­sage bro­ker and in-mem­ory data­base. Lever­ag­ing the com­mu­nity so­lu­tions paired with in­dus­try stan­dards, en­abled the de­vel­op­ment of a highly mod­u­lar sys­tem which pro­vides the flex­i­bil­ity needed for a con­stantly chang­ing sci­en­tific en­vi­ron­ment. One year after the de­vel­op­ment started, the sys­tem was al­ready tested dur­ing many weeks of user op­er­a­tion and re­cently re­ceived the of­fi­cial ap­proval by the in­volved di­vi­sions to be rolled out as part of the SLS 2.0 up­grade.  
slides icon Slides MO2AO02 [3.119 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO02  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO03 The Solid Sample Scanning Workflow at the European XFEL target, FEL, database, controls 78
 
  • A. García-Tabarés Valdivieso, C. Deiter, L. Gelisio, S. Göde, S. Hauf, A.K. Kardoost, I. Karpics, J. Schulz, F. Sohn
    EuXFEL, Schelefeld, Germany
 
  The fast solid sam­ple scan­ner (FSSS) used at the HED in­stru­ment of the Eu­ro­pean XFEL (Eu­XFEL) en­ables data col­lec­tion from mul­ti­ple sam­ples mounted into stan­dard­ized frames which can be ex­changed via a trans­fer sys­tem with­out break­ing the in­ter­ac­tion cham­ber vac­uum. In order to max­i­mize the ef­fec­tive tar­get shot rep­e­ti­tion rate, it is a key re­quire­ment to use sam­ple hold­ers con­tain­ing pre-aligned tar­gets mea­sured on an ac­cu­rate level of a few mi­crom­e­ters. This con­tri­bu­tion de­scribes the au­to­mated sam­ple de­liv­ery work­flow for per­form­ing solid sam­ple scan­ning using the FSSS. This work­flow cov­ers the en­tire process, from au­to­mat­i­cally iden­ti­fy­ing tar­get po­si­tions within the sam­ple, using ma­chine learn­ing al­go­rithms, to set the pa­ra­me­ters needed to per­form the scans. The in­te­gra­tion of this so­lu­tion into the Eu­XFEL con­trol sys­tem, Karabo, not only al­lows to con­trol and per­form the scans with the ex­ist­ing scan tool but also pro­vides tools for image an­no­ta­tion and data ac­qui­si­tion. The so­lu­tion thus en­ables the stor­age of data and meta­data for fu­ture cor­re­la­tion across a va­ri­ety of beam­line pa­ra­me­ters set dur­ing the ex­per­i­ment.  
slides icon Slides MO2AO03 [12.892 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO03  
About • Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO04 Experimental Data Taking and Management: The Upgrade Process at BESSY II and HZB controls, EPICS, data-acquisition, MMI 84
 
  • R. Müller, H. Görzig, G. Hartmann, K. Kiefer, R. Ovsyannikov, W. Smith, S. Vadilonga, J. Viefhaus
    HZB, Berlin, Germany
  • D.B. Allan
    BNL, Upton, New York, USA
 
  The en­deavor of mod­ern­iz­ing sci­ence data ac­qui­si­tion at BESSY II started 2019 [*] Sig­nif­i­cant achieve­ments have been made: the Bluesky soft­ware ecosys­tem is now ac­cepted frame­work for data ac­qui­si­tion, flow con­trol and au­toma­tion. It is op­er­a­tional at an in­creas­ing num­ber of HZB beam­lines, end­sta­tions and in­stru­ments. Par­tic­i­pa­tion in the global Bluesky col­lab­o­ra­tion is an ex­tremely em­pow­er­ing ex­pe­ri­ence. Pro­mot­ing FAIR data prin­ci­ples at all lev­els de­vel­oped a uni­fy­ing mo­men­tum, pro­vid­ing guid­ance at less ob­vi­ous de­sign con­sid­er­a­tions. Now a joint demon­stra­tor pro­ject of DESY, HZB, HZDR and KIT, named ROCK-IT (Re­mote Operando Con­trolled Knowl­edge-dri­ven, IT-based), aims at portable so­lu­tions for fully au­to­mated mea­sure­ments in the catal­y­sis area of ma­te­r­ial sci­ence and is spear­head­ing com­mon de­vel­op­ments. Foun­da­tion there is laid by Bluesky data ac­qui­si­tion, AI/ML sup­port and analy­sis, mod­u­lar sam­ple en­vi­ron­ment, ro­bot­ics and FAIR data han­dling. This paper puts pre­sent HZB con­trols pro­jects as well as de­tailed HZB con­tri­bu­tions to this con­fer­ence [**] into con­text. It out­lines strate­gies pro­vid­ing ap­pro­pri­ate dig­i­tal tools at a suc­ces­sor 4th gen­er­a­tion light source BESSY III.
[*] R. Müller, et.al. https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL02
[**] covering digital twins, Bluesky, sample environment, motion control, remote access, meta data
 
slides icon Slides MO2AO04 [2.522 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO04  
About • Received ※ 05 October 2023 — Revised ※ 26 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO06 Neutron From a Distance: Remote Access to Experiments GUI, controls, network, software 95
 
  • P. Mutti, F. Cecillon, C. Cocho, A. Elaazzouzi, Y. Le Goc, J. Locatelli, H. Ortiz
    ILL, Grenoble, France
 
  Large-scale ex­per­i­men­tal fa­cil­i­ties such as the ILL are de­signed to ac­com­mo­date thou­sands of in­ter­na­tional vis­i­tors each year. De­spite the an­nual in­flux of vis­i­tors, there has al­ways been in­ter­est in op­tions that don’t re­quire users to travel to ILL. Re­mote ac­cess to in­stru­ments and datasets would un­lock sci­en­tific op­por­tu­ni­ties for those less able to travel and con­tribute to global chal­lenges like pan­demics and global warm­ing. Re­mote ac­cess sys­tems can also in­crease the ef­fi­ciency of ex­per­i­ments. For mea­sure­ments that last a long time sci­en­tists can check reg­u­larly on the progress of the data tak­ing from a dis­tance, ad­just­ing the in­stru­ment re­motely if needed. Based on the VISA plat­form, the re­mote ac­cess be­comes a cloud-based ap­pli­ca­tion which re­quires only a web browser and an in­ter­net con­nec­tion. NOMAD Re­mote pro­vides the same ex­pe­ri­ence for users at home as though they were car­ry­ing out their ex­per­i­ment at the fa­cil­ity. VISA makes it easy for the ex­per­i­men­tal team to col­lab­o­rate by al­low­ing users and in­stru­ment sci­en­tists to share the same en­vi­ron­ment in real time. NOMAD Re­mote, an ex­ten­sion of the ILL in­stru­ment con­trol soft­ware, en­ables re­searchers to take con­trol of all in­stru­ments with con­tin­ued hands-on sup­port from local ex­perts. De­vel­oped in-house, NOMAD Re­mote is a ground-break­ing ad­vance in re­mote ac­cess to neu­tron tech­niques. It al­lows full con­trol of the ex­ten­sive range of ex­per­i­men­tal en­vi­ron­ments with the high­est se­cu­rity stan­dards for data, and ac­cess to the in­stru­ment is care­fully pri­ori­tised and au­then­ti­cated.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO06  
About • Received ※ 31 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO07 Dynamical Modelling Validation and Control Development for the New High-Dynamic Double-Crystal Monochromator (HD-DCM-Lite) for Sirius/LNLS controls, FPGA, MMI, HOM 100
 
  • T.R. Silva Soares, J.P.S. Furtado, R.R. Geraldes, M. Saveri Silva, G.S. de Albuquerque
    LNLS, Campinas, Brazil
 
  Two new High-Dy­namic Dou­ble-Crys­tal Mono­chro­ma­tors (HD-DCM-Lite) are under in­stal­la­tion in Sir­ius/LNLS for the new beam­lines QUATI (quick-EX­AFS) and SA­PU­CAIA (SAXS), which re­quires high in-po­si­tion sta­bil­ity (5 nrad RMS in terms of pitch) whereas QUATI’s DCM de­mands the abil­ity to per­form quick si­nu­soidal scans in fre­quen­cies, for ex­am­ple 15 Hz at 4 mrad peak-to-peak am­pli­tude. There­fore, this equip­ment aims to fig­ure as an un­par­al­leled bridge be­tween slow step-scan DCMs, and chan­nel-cut quick-EX­AFS mono­chro­ma­tors. In the pre­vi­ous con­fer­ence, the dy­nam­i­cal mod­el­ling of HD-DCM-Lite was pre­sented, in­di­cat­ing the ex­pected per­for­mance to achieve QUATI and SA­PU­CAIA re­quire­ments. In this work, we are going to pre­sent the of­fline val­i­da­tion of the dy­nam­i­cal mod­el­ling, com­par­ing to the so­lu­tions achieved for the pre­vi­ous ver­sion of LNLS HD-DCMs. This work also pre­sents the hard­ware-based con­trol ar­chi­tec­ture de­vel­op­ment, dis­cussing the loop shap­ing tech­nique and up­grades in the sys­tem, such as the in­crease of the po­si­tion res­o­lu­tion, syn­chro­niza­tion of the ro­tary stages, and FPGA code op­ti­miza­tion. Fur­ther­more, we de­scribe how the mo­tion con­troller was de­vel­oped, given the high-per­for­mance mo­tion con­trol, such as com­plex con­trol al­go­rithm in par­al­lel with a min­i­mal jit­ter and the ex­pec­ta­tions for the beam­lines com­mis­sion­ing re­gard­ing de­tec­tor and un­du­la­tor syn­chro­niza­tion.  
slides icon Slides MO2AO07 [2.432 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO07  
About • Received ※ 06 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 12 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3AO04 Modelling and Control of a MeerKAT Antenna controls, target, site, factory 131
 
  • I.A. Dodia
    SARAO, Cape Town, South Africa
 
  This paper pre­sents a com­pre­hen­sive ap­proach to mod­el­ing for con­trol sys­tem de­sign for a MeerKAT an­tenna. It fo­cuses on dy­namic mod­el­ing using time and fre­quency do­main tech­niques, and lays the foun­da­tion for the de­sign of a con­trol sys­tem to meet the tele­scope’s strin­gent point­ing and track­ing re­quire­ments. The paper scope in­cludes rigid body mod­el­ling of the an­tenna, sys­tem iden­ti­fi­ca­tion to ob­tain model pa­ra­me­ters, and build­ing a sys­tem model in Simulink. The Simulink model al­lows us to com­pare model per­for­mance with the mea­sured an­tenna point­ing, under var­i­ous en­vi­ron­men­tal con­di­tions. The paper also in­te­grates mod­els for point­ing dis­tur­bances, such as wind and fric­tion. The in­te­grated model is com­pared to the ex­ist­ing con­trol setup. Wind dis­tur­bance plays a sig­nif­i­cant role in the point­ing per­for­mance of the an­tenna, there­fore the focus is placed on de­vel­op­ing an ap­pro­pri­ate wind model. This re­search will con­clude by pro­vid­ing a well-doc­u­mented, sys­tem­atic con­trol sys­tem de­sign that is owned by SARAO and can be im­ple­mented to im­prove the point­ing per­for­mance of the tele­scope.  
slides icon Slides MO3AO04 [6.441 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO04  
About • Received ※ 06 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 18 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3BCO06 Web Technology Enabling Fast and Easy Implementation of Large Experimental Facility Control System controls, EPICS, framework, interface 171
 
  • W. Zheng, H.B. Ma, L.Y. Wang, X.H. Xie, W.J. Ye, M. Zhang, P.L. Zhang
    HUST, Hubei, People’s Republic of China
 
  Funding: This work is supported by the National Magnetic Confinement Fusion Science Program (No. 2017YFE0301803) and by the National Natural Science Foundation of China (No.51821005).
Large ex­per­i­men­tal fa­cil­i­ties are es­sen­tial for push­ing the fron­tier of fun­da­men­tal re­search. The con­trol sys­tem is the key for smooth op­er­a­tion for Large ex­per­i­men­tal fa­cil­i­ties. Re­cently many new types of fa­cil­i­ties have emerged, es­pe­cially in fu­sion com­mu­nity, new ma­chines with com­pletely dif­fer­ent de­signs are being built. They are not as ma­ture as ac­cel­er­a­tors. They need flex­i­ble con­trol sys­tems to ac­com­mo­date fre­quent changes in hard­ware and ex­per­i­ment work­flow. The abil­ity to quickly in­te­grate new de­vice and sub-sys­tems into the con­trol sys­tem as well as to eas­ily adopt new op­er­a­tion modes are im­por­tant re­quire­ments for the con­trol sys­tem. Here we pre­sent a con­trol sys­tem frame­work that is built with stan­dard web tech­nol­ogy. The key is using HTTP REST­ful web API as the fun­da­men­tal pro­to­col for max­i­mum in­ter­op­er­abil­ity. This en­ables it to be in­te­grated into the al­ready well de­vel­oped ecosys­tem of web tech­nol­ogy. Many ex­ist­ing tools can be in­te­grated with no or lit­tle de­vel­op­ment. for in­stance, In­fluxDB can be used as the archiver, Node-RED can be used as the Scripter and Docker can be used for quick de­ploy­ment. It has also made in­te­gra­tion of in house de­vel­oped em­bed­ded de­vices much eas­ier. In this paper we will pre­sent the ca­pa­bil­ity of this con­trol sys­tem frame­work, as well as a con­trol sys­tem for field-re­versed con­fig­u­ra­tion fu­sion ex­per­i­ment fa­cil­ity im­ple­mented with it.
 
slides icon Slides MO3BCO06 [5.831 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3BCO06  
About • Received ※ 04 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3BCO07 Fast Beam Delivery for Flash Irradiations at the HZB Cyclotron radiation, controls, proton, cyclotron 178
 
  • J. Bundesmann, A. Denker, G. Kourkafas
    HZB, Berlin, Germany
  • J. Heufelder, A. Weber
    Charite, Berlin, Germany
  • P. Mühldorfer
    BHT, Berlin, Germany
 
  In the con­text of ra­dio­ther­apy, Flash ir­ra­di­a­tions mean the de­liv­ery of high dose rates of more than 40 Gy/s, in a short time of less than one sec­ond. The ex­pec­ta­tion of the ra­dio-on­col­o­gists are lesser side ef­fects while main­tain­ing the tu­mour con­trol when using Flash. Clin­i­cally ac­cept­able de­vi­a­tions of the ap­plied dose to the de­scribed dose are less than 3%. Our ac­cel­er­a­tor con­trol sys­tem is well suited for the stan­dard treat­ment of oc­u­lar melanomas with ir­ra­di­a­ton times of 30 s to 60 s. How­ever, it is too slow for the short times re­quired in Flash. Thus, a ded­i­cated beam de­liv­ery con­trol sys­tem has been de­vel­oped, per­mit­ting ir­ra­di­a­tion times down to 7 ms with a max­i­mal dose vari­a­tion of less than 3%.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3BCO07  
About • Received ※ 24 August 2023 — Revised ※ 07 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2AO01 The Hybrid Identity of a Control System Organization: Balancing Support, Product, and R&D Expectations controls, software, framework, operation 303
 
  • S. Baymani
    PSI, Villigen PSI, Switzerland
 
  Con­trols or­ga­ni­za­tions are often ex­pected to ful­fill a dual role as both a sup­port or­ga­ni­za­tion and an R&D or­ga­ni­za­tion, pro­vid­ing ad­vanced and in­no­v­a­tive ser­vices. This cre­ates a ten­sion be­tween the need to pro­vide ser­vices and the de­sire and ne­ces­sity to de­velop cut­ting-edge tech­nol­ogy. In ad­di­tion, Con­trols or­ga­ni­za­tions must bal­ance the com­pet­ing de­mands of prod­uct de­vel­op­ment, main­te­nance and op­er­a­tions, and in­no­va­tion and R&D. These con­flict­ing ex­pec­ta­tions can lead to ne­glect of long-term strate­gic is­sues and cre­ate im­bal­ances within the or­ga­ni­za­tion, such as tech­ni­cal debt and lack of in­no­va­tion. This paper will ex­plore the chal­lenges of nav­i­gat­ing these con­flict­ing ex­pec­ta­tions and the com­mon traps, risks, and con­se­quences of im­bal­ances. Draw­ing on our ex­pe­ri­ence at PSI, we will dis­cuss spe­cific ex­am­ples of con­flicts and their con­se­quences. We will also pro­pose so­lu­tions to over­come or im­prove these con­flicts and iden­tify a long-term, sus­tain­able ap­proach for a hy­brid or­ga­ni­za­tion such as Con­trols . Our pro­pos­als will cover strate­gies for bal­anc­ing sup­port and prod­uct de­vel­op­ment, im­prov­ing com­mu­ni­ca­tion, and en­abling a cul­ture of in­no­va­tion. Our goal is to spark a broader dis­cus­sion around the iden­tity and role of con­trol sys­tem or­ga­ni­za­tions within large lab­o­ra­tory or­ga­ni­za­tions, and to pro­vide con­crete pro­pos­als for or­ga­ni­za­tions look­ing to bal­ance com­pet­ing de­mands and build a sus­tain­able ap­proach to con­trol sys­tems and ser­vices.  
slides icon Slides TU2AO01 [2.129 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU2AO01  
About • Received ※ 05 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 18 November 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2AO05 Maintenance of the National Ignition Facility Controls Hardware System controls, operation, target, laser 328
 
  • J.L. Vaher, G.K. Brunton, J. Dixon
    LLNL, Livermore, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
At the Na­tional Ig­ni­tion Fa­cil­ity (NIF), achiev­ing fu­sion ig­ni­tion for the first time ever in a lab­o­ra­tory re­quired one of the most com­plex hard­ware con­trol sys­tems in the world. With ap­prox­i­mately 1,200 con­trol racks, 66,000 con­trol points, and 100, 000 ca­bles, main­tain­ing the NIF con­trol sys­tem re­quires an ex­quis­ite chore­og­ra­phy around ex­per­i­men­tal op­er­a­tions while ad­her­ing to NIF’s safety, se­cu­rity, qual­ity, and ef­fi­ciency re­quire­ments. To en­sure sys­tems op­er­ate at peak per­for­mance and re­main avail­able at all times to avoid costly de­lays, pre­ven­ta­tive main­te­nance ac­tiv­i­ties are per­formed two days per week as the foun­da­tion of our ef­fec­tive main­te­nance strat­egy. Re­ac­tive main­te­nance ad­dresses crit­i­cal path is­sues that im­pact ex­per­i­men­tal op­er­a­tions through a rapid re­sponse 24x7 on-call sup­port team. Pri­or­i­tized work re­quests are re­viewed and ap­proved daily by the fa­cil­ity op­er­a­tions sched­ul­ing team. NIF is now in the sec­ond decade of op­er­a­tions, and the aging of many con­trol sys­tems is threat­en­ing to af­fect per­for­mance and avail­abil­ity, po­ten­tially im­pact­ing planned progress of the fu­sion ig­ni­tion pro­gram. The team is em­bark­ing on a large-scale re­fur­bish­ment of sys­tems to mit­i­gate this threat. Our ro­bust main­te­nance pro­gram will en­sure NIF can cap­i­tal­ize on ig­ni­tion and push the fa­cil­ity to even greater achieve­ments. This paper will de­scribe the processes, pro­ce­dures, and met­rics used to plan, co­or­di­nate, and per­form con­trols hard­ware main­te­nance at NIF.
LLNL Release Number: LLNL-ABS-848420
 
slides icon Slides TU2AO05 [1.938 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU2AO05  
About • Received ※ 03 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO02 EPICS Java Developments EPICS, controls, software, framework 342
 
  • KS. Saintin, P. Lotrus
    CEA-IRFU, Gif-sur-Yvette, France
  • L. Caouën
    CEA-DRF-IRFU, France
 
  The IRFU*/DIS soft­ware con­trol team is in­volved from fea­si­bil­ity stud­ies to the de­ploy­ment of equip­ment cov­er­ing low level (hard­ware, PLC) to high level (GUI su­per­vi­sion). For our ex­per­i­ments, we are using two mains frame­works: - MUS­CADE, a full Java in-house so­lu­tion em­bed­ded SCADA ded­i­cated to small and com­pact ex­per­i­ments con­trolled by PLC (Pro­gram­ma­ble Logic Con­troller), only com­pat­i­ble with Win­dows Op­er­at­ing Sys­tem (OS) for the server side. - EPICS**, a dis­trib­uted con­trol sys­tems to op­er­ate de­vices such as par­ti­cle ac­cel­er­a­tors, large fa­cil­i­ties and major tele­scopes, mostly de­ployed on Linux OS en­vi­ron­ments. EPICS frame­works pro­vides sev­eral lan­guages for bind­ings and server in­ter­faces such as C/C++, Python and Java. How­ever, most of the servers also called IOC*** de­vel­oped in the com­mu­nity are based on C/C++ and Linux OS Sys­tem. EPICS also pro­vides ex­ten­sions de­vel­oped in Java such as the EPICS Archiver Ap­pli­ance, Phoe­bus Con­trol-Stu­dio**** (GUI), and Dis­play Web Run­time (Web Client). All these tools de­pend on CAJ (a pure Java im­ple­men­ta­tion Chan­nel Ac­cess Li­brary). Today, MUS­CADE users use to work under Win­dows, and they need in­tu­itive tools that pro­vide the same fea­tures than MUS­CADE. Thus, re­search and de­vel­op­ment ac­tiv­i­ties mainly focus on EPICS so­lu­tion adap­ta­tion. It aims to ex­plore fur­ther CAJ li­brary, es­pe­cially on the server side as­pect. In order to achieve this goal, sev­eral de­vel­op­ments have been car­ried out since 2018.
* IRFU https://irfu.cea.fr/en
** EPICS https://epics-controls.org/
*** IOC Input Output Controller
**** Phoebus Control-Studio https://control-system-studio.readthedocs.io/
 
slides icon Slides TUMBCMO02 [1.381 MB]  
poster icon Poster TUMBCMO02 [2.202 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO02  
About • Received ※ 30 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 30 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO04 Real-Time Visualization and Peak Fitting of Time-of-Flight Neutron Diffraction at VULCAN lattice, neutron, detector, EPICS 346
 
  • B.A. Sobhani, Y. Chen
    ORNL, Oak Ridge, Tennessee, USA
 
  In neu­tron scat­ter­ing ex­per­i­ments at the VUL­CAN beam­line at SNS, Gauss­ian fit­ting of dspace peaks can be used to sum­ma­rize cer­tain ma­te­r­ial prop­er­ties of a sam­ple. If this can be done in real time, it can also as­sist sci­en­tists in mid-ex­per­i­ment de­ci­sion mak­ing. This paper de­scribes a sys­tem de­vel­oped in EPICS for vi­su­al­iz­ing dspace evo­lu­tion and fit­ting dspace peaks in real-time at the VUL­CAN beam­line.  
slides icon Slides TUMBCMO04 [0.433 MB]  
poster icon Poster TUMBCMO04 [0.338 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO04  
About • Received ※ 05 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO08 Extending Phoebus Data Browser to Alternative Data Sources EPICS, database, controls, interface 355
 
  • M. Romanovschi, I.D. Finch, G.D. Howells
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Phoe­bus user in­ter­face to EPICS is an in­te­gral part of the new con­trol sys­tem for the ISIS Neu­tron and Muon Source ac­cel­er­a­tors and tar­gets. Phoe­bus can use the EPICS Archiver Ap­pli­ance, which has been de­ployed as part of the tran­si­tion to EPICS, to dis­play the his­tory of PVs. How­ever, ISIS data has and con­tin­ues to be stored in the In­fluxDB time se­ries data­base. To en­able ac­cess to this data, a Python ap­pli­ca­tion to in­ter­face be­tween Phoe­bus and other data­bases has been de­vel­oped. Our im­ple­men­ta­tion utilises Quart, an asyn­chro­nous web frame­work, to allow mul­ti­ple si­mul­ta­ne­ous data re­quests. Google Pro­to­col Buffer, na­tively sup­ported by Phoe­bus, is used for com­mu­ni­ca­tion be­tween Phoe­bus and the data­base. By em­ploy­ing sub­class­ing, our sys­tem can in prin­ci­ple adapt to dif­fer­ent data­bases, al­low­ing flex­i­bil­ity and ex­ten­si­bil­ity. Our open-source ap­proach en­hances Phoe­bus’s ca­pa­bil­i­ties, en­abling the com­mu­nity to in­te­grate it within a wider range of ap­pli­ca­tions.  
slides icon Slides TUMBCMO08 [0.799 MB]  
poster icon Poster TUMBCMO08 [0.431 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO08  
About • Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 21 November 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO13 Applications of Artificial Intelligence in Laser Accelerator Control System laser, target, controls, simulation 372
 
  • F.N. Li, K.C. Chen, Z. Guo, Q.Y. He, C. Lin, Q. Wang, Y. Xia, M.X. Zang
    PKU, Beijing, People’s Republic of China
 
  Funding: the National Natural Science Foundation of China (Grants No. 11975037, NO. 61631001 and No. 11921006), and the National Grand Instrument Project (No. 2019YFF01014400 and No. 2019YFF01014404).
Ul­tra-in­tense laser-plasma in­ter­ac­tions can pro­duce TV/m ac­cel­er­a­tion gra­di­ents, mak­ing them promis­ing for com­pact ac­cel­er­a­tors. Peking Uni­ver­sity is con­struct­ing a pro­ton ra­dio­ther­apy sys­tem pro­to­type based on PW laser ac­cel­er­a­tors, but tran­sient processes chal­lenge sta­bil­ity con­trol, crit­i­cal for med­ical ap­pli­ca­tions. This work demon­strates ar­ti­fi­cial in­tel­li­gence’s (AI) ap­pli­ca­tion in laser ac­cel­er­a­tor con­trol sys­tems. To achieve mi­cro-pre­ci­sion align­ment be­tween the ul­tra-in­tense laser and tar­get, we pro­pose an au­to­mated po­si­tion­ing pro­gram using the YOLO al­go­rithm. This real-time method em­ploys a con­vo­lu­tional neural net­work, di­rectly pre­dict­ing ob­ject lo­ca­tions and class prob­a­bil­i­ties from input im­ages. It en­ables pre­cise, au­to­matic solid tar­get align­ment in about a hun­dred mil­lisec­onds, re­duc­ing ex­per­i­men­tal prepa­ra­tion time. The YOLO al­go­rithm is also in­te­grated into the safety in­ter­lock­ing sys­tem for anti-tail­ing, al­low­ing quick emer­gency re­sponse. The in­tel­li­gent con­trol sys­tem also en­ables con­ve­nient, ac­cu­rate beam tun­ing. We de­vel­oped high-per­for­mance vir­tual ac­cel­er­a­tor soft­ware using "OpenXAL" and GPU-ac­cel­er­ated multi-par­ti­cle beam trans­port sim­u­la­tions. The soft­ware al­lows real-time or cus­tom pa­ra­me­ter sim­u­la­tions and fea­tures con­trol in­ter­faces com­pat­i­ble with op­ti­miza­tion al­go­rithms. By de­sign­ing tai­lored ob­jec­tive func­tions, de­sired beam size and dis­tri­b­u­tion can be achieved in a few it­er­a­tions.
 
slides icon Slides TUMBCMO13 [1.162 MB]  
poster icon Poster TUMBCMO13 [1.011 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO13  
About • Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 23 November 2023 — Issued ※ 23 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO19 MAX IV Laboratory’s Control System Evolution and Future Strategies controls, operation, detector, TANGO 395
 
  • V. Hardion, P.J. Bell, T. Eriksson, M. Lindberg, P. Sjöblom, D.P. Spruce
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV Lab­o­ra­tory, a 4th gen­er­a­tion syn­chro­tron ra­di­a­tion fa­cil­ity lo­cated in south­ern Swe­den, has been op­er­a­tional since 2016. With mul­ti­ple beam­lines and ex­per­i­men­tal sta­tions com­pleted and in steady use, the fa­cil­ity is now ap­proach­ing the third phase of de­vel­op­ment, which in­cludes the final two of the 16 planned beam­lines in user op­er­a­tion. The focus is on achiev­ing op­er­a­tional ex­cel­lence by op­ti­miz­ing re­li­a­bil­ity and per­for­mance. Mean­while, the strat­egy for the com­ing years is dri­ven by the need to ac­com­mo­date a grow­ing user base, ex­plor­ing the pos­si­bil­ity of op­er­at­ing a Soft X-ray Laser (SXL), and achiev­ing the dif­frac­tion limit for 10 keV of the 3 GeV. The Tech­ni­cal Di­vi­sion is re­spon­si­ble for the con­trol and com­put­ing sys­tems of the en­tire lab­o­ra­tory. This new or­ga­ni­za­tion pro­vides a co­her­ent strat­egy and a clear vi­sion, with the ul­ti­mate goal of en­abling sci­ence. The in­creas­ing de­mand for more pre­cise and ef­fi­cient con­trol sys­tems has led to sig­nif­i­cant de­vel­op­ments and main­te­nance ef­forts. Push­ing the lim­its in re­mote ac­cess, data gen­er­a­tion, time-re­solved and fly-scan ex­per­i­ments, and beam sta­bil­ity re­quires the proper align­ment of tech­nol­ogy in IT in­fra­struc­ture, elec­tron­ics, soft­ware, data analy­sis, and man­age­ment. This ar­ti­cle dis­cusses the mo­ti­va­tion be­hind the up­dates, em­pha­siz­ing the ex­pan­sion of the con­trol sys­tem’s ca­pa­bil­i­ties and re­li­a­bil­ity. Lastly, the tech­no­log­i­cal strat­egy will be pre­sented to keep pace with the rapidly evolv­ing tech­nol­ogy land­scape, en­sur­ing that MAX IV is pre­pared for its next major up­grade.  
slides icon Slides TUMBCMO19 [8.636 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO19  
About • Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 24 November 2023 — Issued ※ 29 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO21 SOLEIL II: Towards A Major Transformation of the Facility controls, operation, synchrotron, MMI 404
 
  • Y.-M. Abiven, S.-E. Berrier, A. Buteau, I. Chado, E. Fonda, E. Frahi, B. Gagey, L.S. Nadolski, P. Pierrot
    SOLEIL, Gif-sur-Yvette, France
 
  Op­er­a­tional since 2008, SOLEIL [1] is pro­vid­ing users with ac­cess to a wide range of ex­per­i­men­tal tech­niques thanks to its 29 beam­lines, cov­er­ing a broad en­ergy range from THz to hard X-ray. In re­sponse to new sci­en­tific and so­ci­etal chal­lenges, SOLEIL is un­der­go­ing a major trans­for­ma­tion with the on­go­ing SOLEIL II pro­ject. This pro­ject in­cludes de­sign­ing an am­bi­tious Dif­frac­tion Lim­ited Stor­age Ring (DLSR) [2] to in­crease per­for­mances in terms of bril­liance, co­her­ence, and flux, up­grad­ing the beam­lines to pro­vide ad­vanced meth­ods, and dri­ving a dig­i­tal trans­for­ma­tion in data- and user- ori­ented ap­proaches. This paper pre­sents the pro­ject or­ga­ni­za­tion and tech­ni­cal de­tails stud­ies for the on­go­ing up­grades, with a focus on the dig­i­tal trans­for­ma­tion re­quired to ad­dress fu­ture sci­en­tific chal­lenges. It will de­pict the com­put­ing and data man­age­ment pro­gram with the pre­sen­ta­tion of the tar­geted IT ar­chi­tec­ture to im­prove au­to­mated and data-dri­ven processes for op­ti­miz­ing in­stru­men­ta­tion. The op­ti­miza­tion pro­gram cov­ers the fa­cil­ity re­con­struc­tion pe­riod as well as fu­ture op­er­a­tion, in­clud­ing the use of Ar­ti­fi­cial In­tel­li­gence (AI) tech­niques for data pro­duc­tion man­age­ment, de­ci­sion-mak­ing, com­plex feed­backs, and data pro­cess­ing. Real-time processes are to be ap­plied in the ac­qui­si­tion scan­ning de­sign, where de­tec­tors and ro­botic sys­tems will be cou­pled to op­ti­mize beam time.  
slides icon Slides TUMBCMO21 [0.663 MB]  
poster icon Poster TUMBCMO21 [1.908 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO21  
About • Received ※ 04 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO23 Development and New Perspectives on the LMJ Power Conditioning Modules laser, software, controls, MMI 415
 
  • P. Torrent, J-P. Airiau, I. Issury
    CEA, LE BARP cedex, France
 
  The Laser Mega­Joule (LMJ), a 176-beam laser French fa­cil­ity, lo­cated at the CEA* CESTA close to Bor­deaux is part of the French Sim­u­la­tion Pro­gram, for im­prove­ment of the­o­ret­i­cal mod­els, high per­for­mance nu­mer­i­cal sim­u­la­tions and ex­per­i­men­tal val­i­da­tions. It is de­signed to de­liver about 1.4 MJ of en­ergy on tar­gets, for plasma and fu­sion ex­per­i­ments. With 15 bun­dles op­er­a­tional at the end of 2023, the op­er­a­tional ca­pa­bil­i­ties are in­creas­ing grad­u­ally until the full com­ple­tion of the LMJ fa­cil­ity by 2025. With the in­creas­ing of the Power Con­di­tion­ing Mod­ules (PCM), it has been ob­served more and more in­sta­bil­i­ties in the syn­chro­niza­tion and the re­peata­bil­ity of the PCM’s trig­ger­ing. For ex­per­i­ments based on 10 or more bun­dles, it has re­sulted in the issue of cou­pling the LMJ bun­dles with the PETAL laser and in the safety shut­down of the PCM due to the time­out of ca­pac­i­tors under high volt­age. In this paper, a de­scrip­tion of the LMJ PCM is first given. Then, the con­sid­ered prob­lem is pre­sented with a de­tailed analy­sis and the soft­ware so­lu­tion is fi­nally pre­sented with ex­per­i­men­tal re­sults show­ing the gain in the re­li­a­bil­ity and ef­fec­tive­ness of the PCM dur­ing the LMJ-PETAL shots.
* CEA : Commissariat à l Energie Atomique et aux Energies Alternatives
 
slides icon Slides TUMBCMO23 [2.897 MB]  
poster icon Poster TUMBCMO23 [0.941 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO23  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO31 Use of EPICS in Small Laboratories controls, EPICS, software, interface 437
 
  • H. Junkes
    FHI, Berlin, Germany
 
  For some time now, we* have also been using the EPICS** con­trol sys­tem in small lab­o­ra­to­ries in order to be able to guar­an­tee data record­ing and pro­cess­ing in ac­cor­dance with the FAIR*** guide­lines and thus to in­crease the over­all qual­ity of the data. It was nec­es­sary to over­come many reser­va­tions and, above all, to counter the prej­u­dice that such sys­tems are only suit­able for large-scale in­stal­la­tions. We are now try­ing to com­mu­ni­cate the idea be­hind this kind of data ac­qui­si­tion (dis­trib­uted sys­tems, open pro­to­cols, open file for­mats, etc.) also in the stud­ies of physi­cists, chemists and en­gi­neers and are ex­tend­ing our ac­tiv­i­ties to uni­ver­si­ties. We also hope that in the fu­ture, users who use the in­di­vid­ual user fa­cil­i­ties will be able to make op­ti­mal use of the op­tions avail­able there. In our talk we will pre­sent the use of EPICS in small lab­o­ra­to­ries.
* https://epics.mpg.de
** https://epics-controls.org
*** https://www.fair-di.eu/fairmat/about-fairmat/consortium-fairmat
 
slides icon Slides TUMBCMO31 [0.788 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO31  
About • Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 06 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP004 System Identification via ARX Model and Control Design for a Granite Bench at Sirius/LNLS controls, simulation, feedback, acceleration 479
 
  • J.P.S. Furtado, I.E. Santos, T.R. Silva Soares
    LNLS, Campinas, Brazil
 
  Mod­ern 4th gen­er­a­tion syn­chro­tron fa­cil­i­ties de­mand me­chan­i­cal sys­tems and hard­ware ca­pa­ble of fine po­si­tion con­trol, im­prov­ing the per­for­mance of ex­per­i­ments at the beam­lines. In this con­text, gran­ite benches are widely used to po­si­tion sys­tems such as op­ti­cal el­e­ments and mag­ne­tos, due to its ca­pac­ity of in­su­lat­ing in­ter­fer­ences from the ground. This work aims to iden­tify the trans­fer func­tion that de­scribes the mo­tion of the gran­ite bench at the EMA Beam­line (Ex­treme con­di­tions Meth­ods of Analy­sis) and then de­sign the con­trol gains to reach an ac­cept­able mo­tion per­for­mance in the sim­u­la­tion en­vi­ron­ment be­fore em­bed­ding the con­fig­u­ra­tion into the real sys­tem, fol­lowed by the val­i­da­tion at the beam­line. This im­prove­ment avoids un­de­sired be­hav­iour in the hard­ware or in the mech­a­nism when de­sign­ing the con­troller. The bench, weight­ing 1.2 tons, is re­spon­si­ble by car­ry­ing a coil, weight­ing 1.8 tons, which ob­jec­tive is to apply a 3 T mag­netic field to the sam­ple that re­ceives the beam pro­vided by the elec­trons ac­cel­er­a­tor. The sys­tem iden­ti­fi­ca­tion method ap­plied in this paper is based on the auto-re­gres­sive model with ex­oge­nous in­puts (ARX). The stan­dard servo con­trol loop of the Omron Delta Tau Power Brick con­troller and the iden­ti­fied plant were sim­u­lated in Simulink in order find the con­trol pa­ra­me­ters. This paper shows the re­sults and com­par­i­son of the sim­u­la­tions and the final val­i­da­tion of the hard­ware per­for­mance over the real sys­tem.  
poster icon Poster TUPDP004 [0.720 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP004  
About • Received ※ 06 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 17 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP006 System Identification Embedded in a Hardware-Based Control System with CompactRIO controls, FPGA, HOM, real-time 489
 
  • T.R. Silva Soares, J.L. Brito Neto, J.P.S. Furtado, R.R. Geraldes
    LNLS, Campinas, Brazil
 
  The de­vel­op­ment of in­no­v­a­tive model-based de­sign high band­width mecha­tronic sys­tems with strin­gent per­for­mance spec­i­fi­ca­tions has be­come ubiq­ui­tous at LNLS-Sir­ius beam­lines. To achieve such un­prece­dent spec­i­fi­ca­tions, closed loop con­trol ar­chi­tec­ture must be im­ple­mented in a fast, flex­i­ble and re­li­able plat­form such as NI Com­pactRIO (cRIO) con­troller that com­bines FPGA and real-time ca­pa­bil­i­ties. The de­sign phase and life-cy­cle man­age­ment of such mecha­tron­ics sys­tems heav­ily de­pends on high qual­ity ex­per­i­men­tal data ei­ther to en­able rapid pro­to­typ­ing, or even to im­ple­ment con­tin­u­ous im­prove­ment process dur­ing op­er­a­tion. This work aims to pre­sent and com­pare dif­fer­ent tech­niques to stim­u­lus sig­nal gen­er­a­tion ap­proach­ing Schroeder phas­ing and Tukey win­dow­ing for bet­ter crest fac­tor, sig­nal-to-noise ratio, min­i­mum mecha­tronic stress, and plant iden­ti­fi­ca­tion. Also show the Lab­VIEW im­ple­men­ta­tion to en­able em­bed­ded­ing this frame­work that re­quires spe­cific sig­nal syn­chro­niza­tion and pro­cess­ing on the main ap­pli­ca­tion con­tain­ing a hard­ware-based con­trol ar­chi­tec­ture, in­creas­ing sys­tem di­ag­nos­tic and main­te­nance abil­ity. Fi­nally, ex­per­i­men­tal re­sults from the High-Dy­namic Dou­ble-Crys­tal Mono­chro­ma­tor (HD-DCM-Lite) of QUATI (quick ab­sorp­tion spec­troscopy) and SA­PU­CAIA (small-an­gle scat­ter­ing) beam­lines and from the High-Dy­namic Cryo­genic Sam­ple Stage from SAPOTI (multi-an­a­lyt­i­cal X-ray tech­nique) of CARNAÚBA beam­line are also pre­sented in this paper.  
poster icon Poster TUPDP006 [0.766 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP006  
About • Received ※ 06 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP010 The Laser Megajoule Facility Status Report laser, target, diagnostics, controls 498
 
  • I. Issury, J-P. Airiau, Y. Tranquille-Marques
    CEA, LE BARP cedex, France
 
  The Laser Mega­Joule, a 176-beam laser fa­cil­ity de­vel­oped by CEA, is lo­cated near Bor­deaux. It is part of the French Sim­u­la­tion Pro­gram, which com­bines im­prove­ment of the­o­ret­i­cal mod­els used in var­i­ous do­mains of physics and high per­for­mance nu­mer­i­cal sim­u­la­tion. It is de­signed to de­liver about 1.4 MJ of en­ergy on tar­gets, for high en­ergy den­sity physics ex­per­i­ments, in­clud­ing fu­sion ex­per­i­ments. The LMJ tech­no­log­i­cal choices were val­i­dated on the LIL, a scale-1 pro­to­type com­posed of 1 bun­dle of 4-beams. The first bun­dle of 8-beams was com­mis­sioned in Oc­to­ber 2014 with the re­al­i­sa­tion of the first ex­per­i­ment on the LMJ fa­cil­ity. The op­er­a­tional ca­pa­bil­i­ties are in­creas­ing grad­u­ally every year until the full com­ple­tion by 2025. By the end of 2023, 18 bun­dles of 8-beams will be as­sem­bled and 15 bun­dles are ex­pected to be fully op­er­a­tional. In this paper, a pre­sen­ta­tion of the LMJ Con­trol Sys­tem ar­chi­tec­ture is given. A de­scrip­tion of the in­te­gra­tion plat­form and sim­u­la­tion tools, lo­cated out­side the LMJ fa­cil­ity, is given. Fi­nally, a re­view of the LMJ sta­tus re­port is de­tailed with an up­date on the LMJ and PETAL ac­tiv­i­ties.
LMJ: Laser MegaJoule
CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives
LIL : Ligne d’Intégration Laser
 
poster icon Poster TUPDP010 [1.200 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP010  
About • Received ※ 28 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 08 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP014 Bluesky Web Client at Bessy II controls, status, interface, real-time 518
 
  • H.L. He, G. Preuß, S.S. Sachse, W. Smith
    HZB, Berlin, Germany
  • R. Ovsyannikov
    BESSY GmbH, Berlin, Germany
 
  Funding: Helmholtz-Zentrum Berlin
Con­sid­er­ing the ex­ist­ing Bluesky con­trol frame­work at BESSY II, a web client with React based on Bluesky HTTP Server is being de­vel­oped. We hope to achieve a cross-plat­form and cross-de­vice sys­tem to re­al­ize re­mote con­trol and mon­i­tor­ing of ex­per­i­ments. The cur­rent func­tions of the sys­tem are mon­i­tor­ing of the Bluesky Queue Server sta­tus, con­trol over a Bluesky Run En­gine en­vi­ron­ment, brows­ing of Queue Server his­tory and edit­ing and run­ning of Bluesky plans. Chal­lenges around the pre­sen­ta­tion of live data are ex­plored. This work builds on that of NSLS II who cre­ated a React based web in­ter­face and im­ple­ments a tool for BESSY II.
 
poster icon Poster TUPDP014 [0.311 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP014  
About • Received ※ 29 September 2023 — Accepted ※ 01 December 2023 — Issued ※ 11 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP015 Test Bench for Motor and Motion Controller Characterization controls, EPICS, GUI, data-acquisition 522
 
  • D.K. Kraft, M. Brendike
    HZB, Berlin, Germany
 
  To max­i­mize beam­time usage mo­tor­iza­tion of beam­line equip­ment is cru­cial. Choos­ing the cor­rect motor is com­plex, since per­for­mance de­pends largely on the com­bi­na­tion of motor and mo­tion con­troller [1]. This chal­lenge, along­side re­new­ing the twenty years old in­fra­struc­ture at BESSY II, led to the de­mand for a motor test­bench. The test­bench was de­signed to be mod­u­lar, so it fits dif­fer­ent mo­tors, loads and sen­sors. It al­lows in­de­pen­dent per­for­mance ver­i­fi­ca­tion and en­ables us to find a fit­ting com­bi­na­tion of motor and mo­tion con­troller. The test­bench is op­er­ated via EPICS and Bluesky, al­low­ing us usage of python for au­to­mated data ac­qui­si­tion and test­ing. An overview of the me­chan­i­cal and elec­tri­cal setup, as well as some data from dif­fer­ent per­for­mance tests will be pre­sented.
[1]A.Hughes , B.Drury, ’Electric Motors and Drivers: Fundamentals, Types and Applications’, Fifth Edition, Kidlington, United Kingdom, 2019, pp. 41-86.
 
poster icon Poster TUPDP015 [1.295 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP015  
About • Received ※ 06 October 2023 — Revised ※ 13 October 2023 — Accepted ※ 02 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP019 Operation of the ESR Storage Ring with the LSA Control System accumulation, operation, storage-ring, injection 534
 
  • S.A. Litvinov, R. Hess, B. Lorentz, M. Steck
    GSI, Darmstadt, Germany
 
  The LHC Soft­ware Ar­chi­tec­ture (LSA) has been ap­plied to the ac­cel­er­a­tor com­plex GSI, Ger­many as a new con­trol sys­tem. The Ex­per­i­men­tal Stor­age Ring (ESR) was recom­mis­sioned with the LSA and dif­fer­ent ac­cel­er­a­tor and physics ex­per­i­ments were per­formed in the last sev­eral years. The overview of the ESR per­for­mance will be pre­sented here. The fea­tures and chal­lenges of the op­er­a­tion with LSA sys­tem will be out­lined as well.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP019  
About • Received ※ 06 October 2023 — Revised ※ 29 November 2023 — Accepted ※ 20 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP043 Final Design of Control and Data Acquisition System for the ITER Heating Neutral Beam Injector Test Bed controls, data-acquisition, network, power-supply 612
 
  • L. Trevisan, A.F. Luchetta, G. Manduchi, G. Martini, A. Rigoni, C. Taliercio
    Consorzio RFX, Padova, Italy
  • N. Cruz
    IPFN, Lisbon, Portugal
  • C. Labate, F. Paolucci
    F4E, Barcelona, Spain
 
  Funding: This work has been carried out within the framework of the EUROfusion Consortium funded by the European Union via Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion)
Toka­maks use heat­ing neu­tral beam (HNB) in­jec­tors to reach fu­sion con­di­tions and drive the plasma cur­rent. ITER, the large in­ter­na­tional toka­mak, will have three high-en­ergy, high-power (1MeV, 16.5MW) HNBs. MIT­ICA, the ITER HNB pro­to­type, is being built at the ITER Neu­tral Beam Test Fa­cil­ity, Italy, to de­velop and test the ITER HNB, whose re­quire­ments are far be­yond the cur­rent HNB tech­nol­ogy. MIT­ICA op­er­ates in a pulsed way with pulse du­ra­tion up to 3600s and 25% duty cycle. It re­quires a com­plex con­trol and data ac­qui­si­tion sys­tem (CODAS) to pro­vide su­per­vi­sory and plant con­trol, mon­i­tor­ing, fast real-time con­trol, data ac­qui­si­tion and archiv­ing, data ac­cess, and op­er­a­tor in­ter­face. The con­trol in­fra­struc­ture con­sists of two parts: cen­tral and plant sys­tem CODAS. The for­mer pro­vides high-level re­sources such as servers and a cen­tral archive for ex­per­i­men­tal data. The lat­ter man­ages the MIT­ICA plant units, i.e., com­po­nents that gen­er­ally ex­e­cute a spe­cific func­tion, such as power sup­ply, vac­uum pump­ing, or sci­en­tific pa­ra­me­ter mea­sure­ments. CODAS in­te­grates var­i­ous tech­nolo­gies to im­ple­ment the re­quired func­tions and meet the as­so­ci­ated re­quire­ments. Our paper pre­sents the CODAS re­quire­ment and ar­chi­tec­ture based on the ex­pe­ri­ence gained with SPI­DER, the ITER full-size beam source in op­er­a­tion since 2018. It fo­cuses on the most chal­leng­ing top­ics, such as syn­chro­niza­tion, fast real-time con­trol, soft­ware de­vel­op­ment for long-last­ing ex­per­i­ments, sys­tem com­mis­sion­ing, and in­te­gra­tion.
 
poster icon Poster TUPDP043 [0.621 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP043  
About • Received ※ 05 October 2023 — Accepted ※ 10 December 2023 — Issued ※ 19 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP046 Beam Operation for Particle Physics and Photon Science with Pulse-to-Pulse Modulation at KEK Injector Linac injection, operation, linac, controls 627
 
  • K. Furukawa, M. Satoh
    KEK, Ibaraki, Japan
 
  The elec­tron and positron ac­cel­er­a­tor com­plex at KEK of­fers unique ex­per­i­men­tal op­por­tu­ni­ties in the fields of el­e­men­tary par­ti­cle physics with Su­perKEKB col­lider and pho­ton sci­ence with two light sources. In order to max­i­mize the ex­per­i­men­tal per­for­mances at those fa­cil­i­ties the in­jec­tor LINAC em­ploys pulse-to-pulse mod­u­la­tion at 50 Hz, in­ject­ing beams with di­verse prop­er­ties. The event-based con­trol sys­tem ef­fec­tively man­ages dif­fer­ent beam con­fig­u­ra­tions. This in­jec­tion scheme was ini­tially de­signed 15 years ago and has been in full op­er­a­tion since 2019. Over the years, quite a few en­hance­ments have been im­ple­mented. As the event-based con­trols are tightly cou­pled with mi­crowave sys­tems, ma­chine pro­tec­tion sys­tems and so on, their mod­i­fi­ca­tions re­quire metic­u­lous plan­ning. How­ever, the di­verse re­quire­ments from par­ti­cle physics and pho­ton sci­ence, stem­ming from the dis­tinct na­ture of those ex­per­i­ments, often ne­ces­si­tate pa­tient ne­go­ti­a­tion to meet the de­mands of both fields. This pre­sen­ta­tion dis­cusses those op­er­a­tional as­pects of the mul­ti­dis­ci­pli­nary fa­cil­ity.  
poster icon Poster TUPDP046 [2.498 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP046  
About • Received ※ 19 November 2023 — Accepted ※ 10 December 2023 — Issued ※ 11 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP050 Development and Test Operation of the Prototype of the New Beam Interlock System for Machine Protection of the RIKEN RI Beam Factory controls, EPICS, operation, FPGA 645
 
  • M. Komiyama, M. Fujimaki, N. Fukunishi, A. Uchiyama
    RIKEN Nishina Center, Wako, Japan
  • M. Hamanaka, K. Kaneko, R. Koyama, M. Nishimura, H. Yamauchi
    SHI Accelerator Service Ltd., Tokyo, Japan
  • A. Kamoshida
    National Instruments Japan Corporation, MInato-ku, Tokyo, Japan
 
  We have been op­er­at­ing the beam in­ter­lock sys­tem (BIS) for ma­chine pro­tec­tion of the RIKEN RI Beam Fac­tory (RIBF) since 2006. It stops beams ap­prox­i­mately 15 ms after re­ceiv­ing an alert sig­nal from the ac­cel­er­a­tor and beam line com­po­nents. We con­tinue to op­er­ate BIS suc­cess­fully; how­ever, we are cur­rently de­vel­op­ing a suc­ces­sor sys­tem to stop a beam within 1 ms con­sid­er­ing that the beam in­ten­sity of RIBF will con­tinue to in­crease in the fu­ture. After com­par­ing mul­ti­ple sys­tems, Com­pactRIO, a prod­uct by Na­tional In­stru­ments, was se­lected for the suc­ces­sor sys­tem. In­ter­lock logic for sig­nal input/out­put is im­ple­mented on the field-pro­gram­ma­ble gate array (FPGA) be­cause fast pro­cess­ing speed is re­quired. On the other hand, sig­nal con­di­tion set­ting and mon­i­tor­ing do not re­quire the same speed as in­ter­lock logic. They are im­ple­mented on the RT-OS and con­trolled by using ex­per­i­men­tal physics and in­dus­trial con­trol sys­tem (EPICS) by set­ting up an EPICS server on the RT-OS. As a first step in de­vel­op­ment, a pro­to­type con­sist­ing of two sta­tions that han­dle only dig­i­tal alert sig­nals was de­vel­oped and in­stalled in part of the RIBF in the sum­mer of 2022 (224 input con­tacts). The sig­nal re­sponse time of the pro­to­type, mea­sured with an os­cil­lo­scope, av­er­aged 0.52 ms with both sta­tions (the dis­tance be­tween two sta­tions is ap­prox­i­mately 75 m). Fur­ther­more, by ad­di­tion­ally in­stalling a pull-up cir­cuit at each sig­nal input con­tact of the sys­tem, the sys­tem re­sponse time was suc­cess­fully re­duced to ap­prox­i­mately 0.13 ms.  
poster icon Poster TUPDP050 [0.816 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP050  
About • Received ※ 03 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP052 The Progress and Status of HEPS Beamline Control System controls, EPICS, detector, synchrotron 650
 
  • G. Li, X.B. Deng, X.W. Dong, Z.H. Gao, G. Lei, Y. Liu, C.X. Yin, Z.Y. Yue, D.S. Zhang, Q. Zhang, Z. Zhao, A.Y. Zhou
    IHEP, Beijing, People’s Republic of China
  • N. Xie
    IMP/CAS, Lanzhou, People’s Republic of China
 
  HEPS will be the first high-en­ergy (6GeV) syn­chro­tron ra­di­a­tion light source in China which is mainly com­posed of an ac­cel­er­a­tor, beam­lines and end-sta­tions. In phase I, 14+1 beam­lines and cor­re­spond­ing ex­per­i­men­tal sta­tions will be con­structed. The beam­line con­trol sys­tem de­sign, based on EPICS, has been com­pleted and will soon enter the stage of en­gi­neer­ing con­struc­tion and united com­mis­sion­ing. Here, the progress and sta­tus of the beam­line con­trol sys­tem are pre­sented.  
poster icon Poster TUPDP052 [4.531 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP052  
About • Received ※ 01 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP065 Introduction to the Control System of the PAL-XFEL Beamlines FEL, controls, network, EPICS 655
 
  • G.S. Park, S-M. Hwang, M.Z. Jeong, W.U. Kang, C.Y. Lim
    PAL, Pohang, Republic of Korea
 
  The PAL-XFEL beam­lines are com­posed of two dif­fer­ent types of beam­lines: a hard X-ray beam­line and a soft X-ray beam­line. The hard X-ray beam­line gen­er­ates free elec­tron lasers with pulse en­er­gies rang­ing from 2-15 keV, pulse lengths of 10-35 fs, and ar­rival time er­rors of less than 20 fs from 4-11 GeV elec­tron beams for X-ray Scat­ter­ing & Spec­troscopy (XSS) and Nano Crys­tal­log­ra­phy & Co­her­ent Imag­ing (NCI) ex­per­i­ments. On the other hand, the soft X-ray beam­line gen­er­ates free elec­tron lasers with pho­ton en­er­gies rang­ing from 0.25-1.25 keV, and with more than 1012 pho­tons, along with 3 GeV elec­tron beams for soft X-ray Scat­ter­ing & Spec­troscopy (SSS) ex­per­i­ments. To con­duct ex­per­i­ments using the XFEL, pre­cise beam align­ment, di­ag­nos­tics, and con­trol of ex­per­i­men­tal de­vices are nec­es­sary. The de­vices of the three beam­lines are com­posed of con­trol sys­tems based on the Ex­per­i­men­tal Physics and In­dus­trial Con­trol Sys­tem (EPICS), which is a widely-used open-source soft­ware frame­work for dis­trib­uted con­trol sys­tems. The beam di­ag­nos­tic de­vices in­clude QBPM (Quad Beam Po­si­tion Mon­i­tor), pho­to­di­ode, Pop-in mon­i­tor, and in­line spec­trom­e­ter, among oth­ers. Ad­di­tion­ally, there are other sys­tems such as CRL (Com­pound Re­frac­tive Lenses), KB mir­ror (Kirk­patrick-Baez mir­ror), at­ten­u­a­tor, and vac­uum that are used in the PAL-XFEL beam­lines. We would like to in­tro­duce the con­trol sys­tem, event tim­ing, and net­work con­fig­u­ra­tion for PAL-XFEL ex­per­i­ments.  
poster icon Poster TUPDP065 [1.116 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP065  
About • Received ※ 10 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP074 Managing Robotics and Digitization Risk GUI, software, controls, neutron 676
 
  • D. Marais, J.C. Mostert, R. Prinsloo
    NECSA, Hartbeespoort, South Africa
 
  Ro­botic and dig­i­ti­za­tion risks refer to the po­ten­tial neg­a­tive con­se­quences that can arise from the use of ro­bots and dig­i­tal tech­nolo­gies in var­i­ous in­dus­tries, which in­clude ex­per­i­men­tal physics con­trol sys­tems. Risks in­clude the com­pro­mis­ing or mal­func­tion­ing of these sys­tems, re­sult­ing in in­jury, equip­ment dam­age, loss of data or dis­rup­tions to crit­i­cal in­fra­struc­ture and ser­vices. Mit­i­gat­ing these risks in­volves tak­ing proac­tive steps to re­duce the like­li­hood of neg­a­tive con­se­quences and min­i­mize their im­pact if they do occur. A com­pre­hen­sive risk man­age­ment ap­proach that in­cor­po­rates a com­bi­na­tion of tech­ni­cal, or­ga­ni­za­tional, and cul­tural strate­gies can help mit­i­gate the po­ten­tial risks through the im­ple­men­ta­tion of the fol­low­ing strate­gies which will be dis­cussed in this pre­sen­ta­tion: Reg­u­lar main­te­nance and test­ing of ro­botic sys­tems; Im­ple­men­ta­tion of strong cyber se­cu­rity mea­sures; Em­ployee train­ing and aware­ness pro­grams; Adop­tion of in­dus­try stan­dards and best prac­tices; De­vel­op­ing con­tin­gency plans and backup sys­tems; Es­tab­lish­ing clear eth­i­cal and so­cial guide­lines.  
poster icon Poster TUPDP074 [2.568 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP074  
About • Received ※ 05 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP083 DAQ System Based on Tango, Sardana and PandABox for Millisecond Time Resolved Experiment at the CoSAXS Beamline of MAX IV Laboratory laser, controls, detector, TANGO 713
 
  • V. Da Silva, B.N. Ahn, J.P. Alcocer, R. Appio, A. Freitas, M. Lindberg, T.S. Plivelic, A.E. Terry
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  CoSAXS is the Co­her­ent and Small Angle X-ray Scat­ter­ing (SAXS) beam­line placed at the dif­frac­tion-lim­ited 3 GeV stor­age ring at MAX IV Lab­o­ra­tory. The beam­line can de­liver a very high pho­ton flux ~1013 ph/s and it is equipped with state-of-the-art pixel de­tec­tors, suit­able for ex­per­i­ments with a high time-res­o­lu­tion to be per­formed. In this work we pre­sent the up­graded beam­line data ac­qui­si­tion strat­egy for a mil­lisec­ond time-re­solved SAXS/WAXS ex­per­i­ment, using laser light to in­duce tem­per­a­ture jumps or UV-ex­ci­ta­tion with the con­se­quent struc­tural changes on the sys­tem. In gen­eral terms, the beam­line con­trol sys­tem is based on TANGO and built on top of it, Sar­dana pro­vides an ad­vanced scan frame­work. In order to syn­chro­nize the laser light pulse on the sam­ple, the X-ray fast shut­ter open­ing time and the X-ray de­tec­tors read­out, hard­ware trig­gers are used. The im­ple­men­ta­tion is done using Pand­ABox, which gen­er­ates the pulse train for the laser and for all ac­tive ex­per­i­men­tal chan­nels, such as coun­ters and de­tec­tors, in syn­chro­niza­tion with the fast shut­ter open­ing time. Pand­ABox in­te­gra­tion is done with a Sar­dana Trig­ger Gate Con­troller, used to con­fig­ure the pulses pa­ra­me­ters as well to or­ches­trate the hard­ware trig­gers dur­ing a scan. This paper de­scribes the ex­per­i­ment or­ches­tra­tion, laser light syn­chro­niza­tion with mul­ti­ple X-ray de­tec­tor.  
poster icon Poster TUPDP083 [1.645 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP083  
About • Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP093 CERN Proton Irradiation Facility (IRRAD) Data Management, Control and Monitoring System Infrastructure for post-LS2 Experiments radiation, controls, proton, monitoring 762
 
  • B. Gkotse, G. Pezzullo, F. Ravotti
    CERN, Meyrin, Switzerland
  • P. Jouvelot
    MINES Paris, PSL, Paris, Cedex 06,, France
 
  Funding: European Union’s Horizon 2020 Research and Innovation programme under GA no 101004761 and Horizon Europe Research and Innovation programme under Grant Agreement No 101057511.
Since up­grades of the CERN Large Hadron Col­lider are planned and de­sign stud­ies for a post-LHC par­ti­cle ac­cel­er­a­tor are on­go­ing, it is key to en­sure that the de­tec­tors and elec­tronic com­po­nents used in the CERN ex­per­i­ments and ac­cel­er­a­tors can with­stand the high amount of ra­di­a­tion pro­duced dur­ing par­ti­cle col­li­sions. To com­ply with this re­quire­ment, sci­en­tists per­form ra­di­a­tion test­ing ex­per­i­ments, which con­sist in ex­pos­ing these com­po­nents to high lev­els of par­ti­cle ra­di­a­tion to sim­u­late the real op­er­a­tional con­di­tions. The CERN Pro­ton Ir­ra­di­a­tion Fa­cil­ity (IRRAD) is a well-es­tab­lished ref­er­ence fa­cil­ity for con­duct­ing such ex­per­i­ments. Over the years, the IRRAD fa­cil­ity has de­vel­oped a ded­i­cated soft­ware in­fra­struc­ture to sup­port the con­trol and mon­i­tor­ing sys­tems used to man­age these ex­per­i­ments, as well as to han­dle other im­por­tant as­pects such as dosime­try, spec­trom­e­try, and ma­te­r­ial trace­abil­ity. In this paper, new de­vel­op­ments and up­grades to the IRRAD soft­ware in­fra­struc­ture are pre­sented. These ad­vances are cru­cial to en­sure that the fa­cil­ity re­mains up-to-date and able to cope with the in­creas­ing (and al­ways more com­plex) user needs. These soft­ware up­grades (some of them car­ried out within the EU-funded pro­ject AIDAin­nova and EURO-LABS) will help to im­prove the ef­fi­ciency and ac­cu­racy of the ex­per­i­ments per­formed at IRRAD and en­hance the ca­pa­bil­i­ties of this fa­cil­ity.
 
poster icon Poster TUPDP093 [2.888 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP093  
About • Received ※ 05 October 2023 — Revised ※ 21 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 10 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP105 The SLS 2.0 Beamline Control System Upgrade Strategy controls, EPICS, MMI, network 807
 
  • T. Celcer, X. Yao, E. Zimoch
    PSI, Villigen PSI, Switzerland
 
  After more than 20 years of suc­cess­ful op­er­a­tion the SLS fa­cil­ity will un­dergo a major up­grade, re­plac­ing the en­tire stor­age ring, which will re­sult in a sig­nif­i­cantly im­proved beam emit­tance and bright­ness. In order to make use of im­proved beam char­ac­ter­is­tics, beam­line up­grades will also play a cru­cial part in the SLS 2.0 pro­ject. How­ever, of­fer­ing our users an op­ti­mal beam­time ex­pe­ri­ence will strongly de­pend on our abil­ity to lever­age the beam­line con­trol and data ac­qui­si­tion tools to a new level. There­fore, it is nec­es­sary to up­grade and mod­ern­ize the ma­jor­ity of our cur­rent con­trol sys­tem stack. This ar­ti­cle pro­vides an overview of the planned beam­line con­trol sys­tem up­grade from the tech­ni­cal as well as pro­ject man­age­ment per­spec­tive. A port­fo­lio of se­lected tech­ni­cal so­lu­tions for the main con­trol sys­tem build­ing blocks will be dis­cussed. Cur­rently, the con­trols HW in SLS is based on the VME plat­form, run­ning the Vx­Works op­er­at­ing sys­tem. Dig­i­tal/ana­log I/O, a va­ri­ety of mo­tion so­lu­tions, scalers, high volt­age power sup­plies, and tim­ing and event sys­tem are all pro­vided using this plat­form. A sen­si­ble mi­gra­tion strat­egy is being de­vel­oped for each in­di­vid­ual sys­tem, along with the over­all strat­egy to de­liver a mod­ern high-level ex­per­i­ment or­ches­tra­tion en­vi­ron­ment. The ar­ti­cle also fo­cuses on the chal­lenges of the phased up­grade, cou­pled with the un­avoid­able co­ex­is­tence with ex­ist­ing VME-based legacy sys­tems due to time, bud­get, and re­source con­straints.  
poster icon Poster TUPDP105 [4.148 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP105  
About • Received ※ 04 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP110 Control System Design of the CHIMERA Fusion Test Facility controls, EPICS, PLC, SCADA 827
 
  • P.T. Smith, A. Greer, B.A. Roberts, P.B. Taylor
    OSL, St Ives, Cambridgeshire, United Kingdom
  • D.J.N. McCubbin, M. Roberts
    JCE, Warrington, United Kingdom
 
  Funding: Observatory Sciences Ltd
CHIMERA is an ex­per­i­men­tal nu­clear fu­sion test fa­cil­ity which aims to sim­u­late the in­tense mag­netic fields and tem­per­a­ture gra­di­ents found within a toka­mak fu­sion re­ac­tor. The con­trol sys­tem at CHIMERA is based on EPICS and will have ap­prox­i­mately 30 input/out­put con­trollers (IOCs) when it comes on­line in 2024. It will make heavy use of CSS Phoe­bus for its user in­ter­face, se­quencer and alarm sys­tem. CHIMERA will use EPICS Archiver Ap­pli­ance for data archiv­ing and EPICS areaD­e­tec­tor to ac­quire high speed data which is stored in the HDF5 for­mat. The con­trol phi­los­o­phy at CHIMERA em­pha­sises PLC based con­trol logic using mostly Siemens S7-1500 PLCs and using OPCUA to com­mu­ni­cate with EPICS. EPICS AU­TOSAVE is used both for man­u­ally set­ting lists of process vari­ables (PVs) and for au­to­matic restora­tion of PVs if an IOC must be restarted.
 
poster icon Poster TUPDP110 [1.711 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP110  
About • Received ※ 03 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 17 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP117 Classification and Prediction of Superconducting Magnet Quenches power-supply, superconducting-magnet, GUI, operation 856
 
  • J.A. Einstein-Curtis, J.P. Edelen, M.C. Kilpatrick, R. O’Rourke
    RadiaSoft LLC, Boulder, Colorado, USA
  • K.A. Drees, J.S. Laster, M. Valette
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0021699.
Ro­bust and re­li­able quench de­tec­tion for su­per­con­duct­ing mag­nets is in­creas­ingly im­por­tant as fa­cil­i­ties push the bound­aries of in­ten­sity and op­er­a­tional run­time. Ra­di­a­Soft has been work­ing with Brookhaven Na­tional Lab on quench de­tec­tion and pre­dic­tion for su­per­con­duct­ing mag­nets in­stalled in the RHIC stor­age rings. This pro­ject has an­a­lyzed sev­eral years of power sup­ply and beam po­si­tion mon­i­tor data to train au­to­mated clas­si­fi­ca­tion tools and au­to­mated quench pre­cur­sor de­ter­mi­na­tion based on input se­quences. Clas­si­fi­ca­tion was per­formed using su­per­vised mul­ti­layer per­cep­tron and boosted de­ci­sion tree ar­chi­tec­tures, while mod­els of the ex­pected op­er­a­tion of the ring were de­vel­oped using a va­ri­ety of au­toen­coder ar­chi­tec­tures. We have con­tin­ued ef­forts to max­i­mize area under the re­ceiver op­er­at­ing char­ac­ter­is­tic curve for the mul­ti­ple clas­si­fi­ca­tion prob­lem of real quench, fake quench, and no-quench events. We have also begun work on long short-term mem­ory (LSTM) and other re­cur­rent ar­chi­tec­tures for quench pre­dic­tion. Ex­am­i­na­tions of fu­ture work uti­liz­ing more ro­bust ar­chi­tec­tures, such as vari­a­tional au­toen­coders and Siamese mod­els, as well as meth­ods nec­es­sary for un­cer­tainty quan­tifi­ca­tion will be dis­cussed.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP117  
About • Received ※ 08 October 2023 — Revised ※ 22 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 07 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP120 How Embracing a Common Tech Stack Can Improve the Legacy Software Migration Experience software, database, framework, laser 860
 
  • C.D. Burgoyne, C.R. Albiston, R.G. Beeler, M. Fedorov, J.J. Mello, E.R. Pernice, M. Shor
    LLNL, Livermore, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Over the last sev­eral years, the Na­tional Ig­ni­tion Fa­cil­ity (NIF), the world’s largest and most en­er­getic laser, has reg­u­larly con­ducted ap­prox­i­mately 400 shots per year. Each ex­per­i­ment is de­fined by up to 48 unique pulse shapes, with each pulse shape po­ten­tially hav­ing thou­sands of con­fig­urable data points. The im­por­tance of ac­cu­rately rep­re­sent­ing small changes in pulse shape, il­lus­trated by the his­toric ig­ni­tion ex­per­i­ment in De­cem­ber 2022, high­lights the ne­ces­sity for pulse de­sign­ers at NIF to have ac­cess to ro­bust, easy to use, and ac­cu­rate de­sign soft­ware that can in­te­grate with the ex­ist­ing and fu­ture ecosys­tem of soft­ware at NIF. To de­velop and main­tain this type of com­plex soft­ware, the Shot Data Sys­tems (SDS) group has re­cently em­braced lever­ag­ing a com­mon set of rec­om­mended tech­nolo­gies and frame­works for soft­ware de­vel­op­ment across their suite of ap­pli­ca­tions. This paper will de­tail SDS’s ex­pe­ri­ence mi­grat­ing an ex­ist­ing legacy Java Swing-based pulse shape ed­i­tor into a mod­ern web ap­pli­ca­tion lever­ag­ing tech­nolo­gies rec­om­mended by the com­mon tech stack, in­clud­ing Spring Boot, Type­Script, React and Docker with Ku­ber­netes, as well as dis­cuss how em­brac­ing a com­mon set of tech­nolo­gies in­flu­enced the mi­gra­tion path, im­proved the de­vel­oper ex­pe­ri­ence, and how it will ben­e­fit the ex­ten­si­bil­ity and main­tain­abil­ity of the ap­pli­ca­tion for years to come.
LLNL Release Number: LLNL-ABS-848203
 
poster icon Poster TUPDP120 [0.611 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP120  
About • Received ※ 27 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP145 Position-Based Continuous Energy Scan Status at MAX IV controls, undulator, detector, synchrotron 917
 
  • Á. Freitas, N.S. Al-Habib, B. Bertrand, M. Eguiraun, I. Gorgisyan, A.F. Joubert, J. Lidón-Simon, M. Lindberg, C. Takahashi
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The tra­di­tional ap­proach of step scan­ning in X-ray ex­per­i­ments is often in­ef­fi­cient and may in­crease the risk of sam­ple ra­di­a­tion dam­age. In order to over­come these chal­lenges, a new po­si­tion-based con­tin­u­ous en­ergy scan­ning sys­tem has been de­vel­oped at MAX IV Lab­o­ra­tory. This sys­tem en­ables sta­ble and re­peat­able mea­sure­ments by con­tin­u­ously mov­ing the mo­tors dur­ing the scan. Trig­gers are gen­er­ated in hard­ware based on the motor en­coder po­si­tions to en­sure pre­cise data ac­qui­si­tion. Prior to the scan, a list of po­si­tions is gen­er­ated, and trig­gers are pro­duced as each po­si­tion is reached. The sys­tem uses Tango and Sar­dana for con­trol and a Trig­ger­Gate con­troller to cal­cu­late motor po­si­tions and con­fig­ure the Pand­ABox, which gen­er­ates the trig­gers. The sys­tem is ca­pa­ble of scan­ning a sin­gle motor, such as a sam­ple po­si­tioner, or a com­bined mo­tion like a mono­chro­ma­tor and un­du­la­tor. In ad­di­tion, the sys­tem can use the para­met­ric tra­jec­tory mode of IcePAP dri­ver, which en­ables con­tin­u­ous scans of cou­pled axes with non-lin­ear paths. This paper pre­sents the cur­rent sta­tus of the po­si­tion-based con­tin­u­ous en­ergy scan­ning sys­tem for Bio­MAX, Flex­PES, and FinEst beam­lines at MAX IV and dis­cusses its po­ten­tial to en­hance the ef­fi­ciency and ac­cu­racy of data ac­qui­si­tion at beam­line end­sta­tions.  
poster icon Poster TUPDP145 [1.943 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP145  
About • Received ※ 05 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 11 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUSDSC02 Integrating Online Analysis with Experiments to Improve X-Ray Light Source Operations interface, real-time, simulation, framework 921
 
  • N.M. Cook, E.G. Carlin, J.A. Einstein-Curtis, R. Nagler, R. O’Rourke
    RadiaSoft LLC, Boulder, Colorado, USA
  • A.M. Barbour, M. Rakitin, L. Wiegart, H. Wijesinghe
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number DE-SC00215553.
The de­sign, ex­e­cu­tion, and analy­sis of light source ex­per­i­ments re­quires the use of so­phis­ti­cated sim­u­la­tion, con­trols and data man­age­ment tools. Ex­ist­ing work­flows re­quire sig­nif­i­cant spe­cial­iza­tion to ac­com­mo­date spe­cific beam­line op­er­a­tions and data pre-pro­cess­ing steps nec­es­sary for more in­ten­sive analy­sis. Re­cent ef­forts to ad­dress these needs at the Na­tional Syn­chro­tron Light Source II (NSLS-II) have re­sulted in the cre­ation of the Bluesky data col­lec­tion frame­work, an open-source li­brary for co­or­di­nat­ing ex­per­i­men­tal con­trol and data col­lec­tion. Bluesky pro­vides high level ab­strac­tion of ex­per­i­men­tal pro­ce­dures and in­stru­ment read­outs to en­cap­su­late generic work­flows. We pre­sent a pro­to­type data analy­sis plat­form for in­te­grat­ing data col­lec­tion with real time analy­sis at the beam­line. Our ap­pli­ca­tion lever­ages Bluesky in com­bi­na­tion with a flex­i­ble run en­gine to ex­e­cute user con­fig­urable Python-based analy­ses with cus­tomiz­able queue­ing and re­source man­age­ment. We dis­cuss ini­tial demon­stra­tions to sup­port X-ray pho­ton cor­re­la­tion spec­troscopy ex­per­i­ments and fu­ture ef­forts to ex­pand the plat­form’s fea­tures.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUSDSC02  
About • Received ※ 06 October 2023 — Revised ※ 22 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1BCO02 Data Management Infrastructure for European XFEL FEL, data-management, network, hardware 952
 
  • J. Malka, S. Aplin, D. Boukhelef, K. Filippakopoulos, L.G. Maia, T. Piszczek, Mr. Previtali, J. Szuba, K. Wrona
    EuXFEL, Schenefeld, Germany
  • S. Dietrich, MA. Gasthuber, J. Hannappel, M. Karimi, Y. Kemp, R. Lueken, T. Mkrtchyan, K. Ohrenberg, F. Schlünzen, P. Suchowski, C. Voss
    DESY, Hamburg, Germany
 
  Ef­fec­tive data man­age­ment is cru­cial to en­sure re­search data is eas­ily ac­ces­si­ble and us­able. We will pre­sent de­sign and im­ple­men­ta­tion of the Eu­ro­pean XFEL data man­age­ment in­fra­struc­ture sup­port­ing high level data man­age­ment ser­vices. The sys­tem ar­chi­tec­ture com­prises four lay­ers of stor­age sys­tems, each de­signed to ad­dress spe­cific chal­lenges. The first layer, re­ferred to as on­line, is de­signed as a fast cache to ac­com­mo­date ex­treme high rates (up to 15GB/s) of data gen­er­ated dur­ing ex­per­i­ment at sin­gle sci­en­tific in­stru­ment. The sec­ond layer, called high-per­for­mance stor­age, pro­vides nec­es­sary ca­pa­bil­i­ties for data pro­cess­ing both dur­ing and after ex­per­i­ments. The lay­ers are in­cor­po­rated into a sin­gle in­fini­band fab­ric and con­nected through a 4km long 1Tb/s link. This al­lows fast data trans­fer from the Eu­ro­pean XFEL ex­per­i­ment hall to the DESY com­put­ing cen­ter. The third layer, mass-stor­age, ex­tends the ca­pac­ity of data stor­age sys­tem to allow mid-term data ac­cess for de­tailed analy­sis. Fi­nally, the tape archive, pro­vides data safety and long-term archive (5-10years). The high per­for­mance and mass stor­age sys­tems are con­nected to com­put­ing clus­ters. This al­lows users to per­form near-on­line and of­fline data analy­sis or al­ter­na­tively ex­port data out­side of the Eu­ro­pean XFEL fa­cil­ity. The data man­age­ment in­fra­struc­ture at the Eu­ro­pean XFEL has the ca­pac­ity to ac­cept and process up to 2PB of data per day, which demon­strates the re­mark­able ca­pa­bil­i­ties of all the sub-ser­vices in­volved in this process.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE1BCO02  
About • Received ※ 06 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1BCO04 The LCLS-II Experiment System Vacuum Controls Architecture vacuum, controls, interface, EPICS 962
 
  • M. Ghaly, T.A. Wallace
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by Department of Energy contract DE-AC02-76SF00515.
The LCLS-II Ex­per­i­ment Sys­tem Vac­uum Con­trols Ar­chi­tec­ture is a col­lec­tion of vac­uum sys­tem de­sign tem­plates, in­ter­lock log­ics, sup­ported com­po­nents (eg. gauges, pumps, valves), in­ter­face I/O, and as­so­ci­ated soft­ware li­braries which im­ple­ment a base­line func­tion­al­ity and sim­u­la­tion. The ar­chi­tec­ture also in­cludes a com­ple­ment of en­gi­neer­ing and de­ploy­ment tools in­clud­ing cable test boxes or hard­ware sim­u­la­tors, as well as some au­to­matic con­fig­u­ra­tion tools. Vac­uum con­trols at LCLS spans from rough vac­uum in com­plex pump­ing man­i­folds, pro­tec­tion of highly-sen­si­tive x-ray op­tics using fast shut­ters, main­te­nance of ul­tra-high vac­uum in ex­per­i­men­tal sam­ple de­liv­ery se­tups, and be­yond. Often, the vac­uum stan­dards for LCLS sys­tems ex­ceeds what most ven­dors are ex­pe­ri­enced with. The sys­tem must main­tain high-avail­abil­ity, while also re­main­ing flex­i­ble and han­dling on­go­ing mod­i­fi­ca­tions. This paper will re­view the com­pre­hen­sive ar­chi­tec­ture, the re­quire­ments of the LCLS sys­tems, and in­tro­duce how to use it for new vac­uum sys­tem de­signs. The ar­chi­tec­ture is meant to in­flu­ence all phases of a vac­uum sys­tem life­cy­cle, and ide­ally could be­come a shared pro­ject for in­stal­la­tions be­yond LCLS-II.
 
slides icon Slides WE1BCO04 [3.154 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE1BCO04  
About • Received ※ 31 October 2023 — Revised ※ 20 November 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO02 In the Midst of Fusion Ignition: A Look at the State of the National Ignition Facility Control and Information Systems controls, laser, target, optics 973
 
  • M. Fedorov, A.I. Barnes, L. Beaulac, A.D. Casey, J.R. Castro Morales, J. Dixon, C.M. Estes, M.S. Flegel, V.K. Gopalan, S. Heerey, R. Lacuata, V.J. Miller Kamm, B.P. Patel, M. Paul, N.I. Spafford, J.L. Vaher
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The Na­tional Ig­ni­tion Fa­cil­ity (NIF) is the world’s largest and most en­er­getic 192-laser-beam sys­tem which con­ducts ex­per­i­ments in High En­ergy Den­sity (HED) physics and In­er­tial Con­fine­ment Fu­sion (ICF). In De­cem­ber 2022, the NIF achieved a sci­en­tific break­through when, for the first time ever, the ICF ig­ni­tion oc­curred under lab­o­ra­tory con­di­tions. The key to the NIF’s ex­per­i­men­tal prowess and ver­sa­til­ity is not only its power but also its pre­cise con­trol. The NIF con­trols and data sys­tems place the ex­per­i­menter in full com­mand of the laser and tar­get di­ag­nos­tics ca­pa­bil­i­ties. The re­cently up­graded Mas­ter Os­cil­la­tor Room (MOR) sys­tem pre­cisely shapes NIF laser pulses in the tem­po­ral, spa­tial, and spec­tral do­mains. Apart from the pri­mary 10-me­ter spher­i­cal tar­get cham­ber, the NIF laser beams can now be di­rected to­wards two more ex­per­i­men­tal sta­tions to study laser in­ter­ac­tions with op­tics and large full beam tar­gets. The NIF’s wide range of tar­get di­ag­nos­tics con­tin­ues to ex­pand with new tools to probe and cap­ture com­plex plasma phe­nom­ena using x-rays, gamma-rays, neu­trons, and ac­cel­er­ated pro­tons. While the in­creas­ing neu­tron yields mark the NIF’s steady progress to­wards ex­cit­ing ex­per­i­men­tal regimes, they also re­quire new mit­i­ga­tions for ra­di­a­tion dam­age in con­trol and di­ag­nos­tic elec­tron­ics. With many NIF com­po­nents ap­proach­ing 20 years of age, a Sus­tain­ment Plan is now un­der­way to mod­ern­ize NIF, in­clud­ing con­trols and in­for­ma­tion sys­tems, to as­sure NIF op­er­a­tions through 2040.
LLNL Release Number: LLNL-ABS-847574
 
slides icon Slides WE2BCO02 [4.213 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO02  
About • Received ※ 02 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO07 15 Years of ALICE DCS detector, operation, controls, interface 1002
 
  • P.Ch. Chochula, A. Augustinus, P.M. Bond, A.N. Kurepin, M. Lechman, D. Voscek
    CERN, Meyrin, Switzerland
  • O. Pinazza
    INFN-Bologna, Bologna, Italy
 
  The ALICE ex­per­i­ment stud­ies ultra rel­a­tivis­tic heavy ion col­li­sions at the Large Hadron Col­lider at CERN. Its De­tec­tor Con­trol Sys­tem (DCS) has been en­sur­ing the ex­per­i­ment safety and sta­bil­ity of data col­lec­tion since 2008. A small cen­tral team at CERN co­or­di­nated the de­vel­op­ments with col­lab­o­rat­ing in­sti­tutes and de­fined the op­er­a­tional prin­ci­ples and tools. Al­though the basic ar­chi­tec­ture of the sys­tem re­mains valid, it has had to adapt to the changes and evo­lu­tion of its com­po­nents. The in­tro­duc­tion of new de­tec­tors into ALICE has re­quired the re­design of sev­eral parts of the sys­tem, es­pe­cially the front-end elec­tron­ics con­trol, which trig­gered new de­vel­op­ments. Now, the DCS en­ters the do­main of data ac­qui­si­tion, and the con­trols data is in­ter­leaved with the physics data stream, shar­ing the same op­ti­cal links. The pro­cess­ing of con­di­tions data has moved from batch col­lec­tion at the end of data-tak­ing to con­stant stream­ing. The grow­ing com­plex­ity of the sys­tem has led to a big focus on the op­er­a­tor en­vi­ron­ment, with ef­forts to min­i­mize the risk of human er­rors. This pre­sen­ta­tion de­scribes the evo­lu­tion of the ALICE con­trol sys­tem over the past 15 years and high­lights the sig­nif­i­cant im­prove­ments made to its ar­chi­tec­ture. We dis­cuss how the chal­lenges of in­te­grat­ing com­po­nents de­vel­oped in tens of in­sti­tutes world­wide have been mas­tered in ALICE.
This proposed contribution is complemented by poster submitted by Ombretta Pinazza who will explain the user interfaces deployed in ALICE.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO07  
About • Received ※ 06 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 21 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO06 Assonant: A Beamline-Agnostic Event Processing Engine for Data Collection and Standardization controls, software, synchrotron, data-management 1025
 
  • P.B. Mausbach, E.X. Miqueles, A. Pinto
    LNLS, Campinas, Brazil
 
  Syn­chro­tron ra­di­a­tion fa­cil­i­ties com­prise beam­lines de­signed to per­form a wide range of X-ray ex­per­i­men­tal tech­niques which re­quire com­plex in­stru­ments to mon­i­tor ther­mo­dy­namic vari­ables, sam­ple-re­lated vari­ables, among oth­ers. Thus, syn­chro­tron beam­lines can pro­duce het­ero­ge­neous sets of data and meta­data, here­after re­ferred to as data, which im­pose sev­eral chal­lenges to stan­dard­iz­ing them. For open sci­ence and FAIR prin­ci­ples, such stan­dard­iza­tion is para­mount for re­search re­pro­ducibil­ity, be­sides ac­cel­er­at­ing the de­vel­op­ment of scal­able and reusable data-dri­ven so­lu­tions. To ad­dress this issue, the As­so­nant was de­vised to col­lect and stan­dard­ize the data pro­duced at beam­lines of Sir­ius, the Brazil­ian fourth-gen­er­a­tion syn­chro­tron light source. This so­lu­tion en­ables a NeXus-com­pli­ant tech­nique-cen­tric data stan­dard at Sir­ius trans­par­ently for beam­line teams by re­mov­ing the bur­den of stan­dard­iza­tion tasks from them and pro­vid­ing a uni­fied stan­dard­iza­tion so­lu­tion for sev­eral tech­niques at Sir­ius. The As­so­nant im­ple­ments a soft­ware in­ter­face to ab­stract data for­mat-re­lated speci­fici­ties and to send the pro­duced data to an event-dri­ven in­fra­struc­ture com­posed of stream­ing pro­cess­ing and mi­croser­vices, able to trans­form the data flow ac­cord­ing to NeXus*. This paper pre­sents the de­vel­op­ment process of As­so­nant, the strat­egy adopted to stan­dard­ize beam­lines with dif­fer­ent op­er­at­ing stages, and chal­lenges faced dur­ing the stan­dard­iza­tion process for macro­mol­e­c­u­lar crys­tal­log­ra­phy and imag­ing data at Sir­ius.
* M. Könnecke et al., ’The nexus data format’, Journal of applied crystallography, vol. 48, no. 1, pp. 301-305, 2015.
 
slides icon Slides WE3BCO06 [4.909 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO06  
About • Received ※ 05 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 18 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO07 Extending the ICAT Metadata Catalogue to New Scientific Use Cases SRF, site, synchrotron, interface 1033
 
  • A. Götz, M. Bodin, A. De Maria Antolinos, M. Gaonach
    ESRF, Grenoble, France
  • M. AlMohammad, S.A. Matalgah
    SESAME, Allan, Jordan
  • P. Austin, V. Bozhinov, L.E. Davies, A. Gonzalez Beltran, K.S. Phipps
    STFC/RAL/SCD, Didcot, United Kingdom
  • R. Cabezas Quirós
    ALBA-CELLS, Cerdanyola del Vallès, Spain
  • R. Krahl
    HZB, Berlin, Germany
  • A. Pinto
    LNLS, Campinas, Brazil
  • K. Syder
    DLS, Oxfordshire, United Kingdom
 
  The ICAT meta­data cat­a­logue is a flex­i­ble so­lu­tion for man­ag­ing sci­en­tific meta­data and data from a wide va­ri­ety of do­mains fol­low­ing the FAIR data prin­ci­ples. This paper will pre­sent an up­date of re­cent de­vel­op­ments of the ICAT meta­data cat­a­logue and the lat­est sta­tus of the ICAT col­lab­o­ra­tion. ICAT was orig­i­nally de­vel­oped by UK Sci­ence and Tech­nol­ogy Fa­cil­i­ties Coun­cil (STFC) to man­age the sci­en­tific data of ISIS Neu­tron and Muon Source and Di­a­mond Light Source. They have since been joined by a num­ber of other in­sti­tutes in­clud­ing ESRF, HZB, SESAME, and ALBA who to­gether now form the ICAT Col­lab­o­ra­tion [1]. ICAT has been used to man­age petabytes of sci­en­tific data for ISIS, DLS, ESRF, HZB, and in the fu­ture SESAME and ALBA and make these data FAIR. The lat­est ver­sion of the ICAT core as well as the new user in­ter­faces, Data­Gate­way and DataHub, and ex­ten­sions to ICAT for im­ple­ment­ing free text search­ing, a com­mon search in­ter­face across Pho­ton and Neu­tron cat­a­logues, a pro­to­col-based in­ter­face that al­lows mak­ing the meta­data avail­able for find­abil­ity, elec­tronic log­books, sam­ple track­ing, and web-based data and do­main spe­cific view­ers de­vel­oped by the com­mu­nity will be pre­sented. Fi­nally re­cent de­vel­op­ments to use ICAT to de­velop ap­pli­ca­tions for processed data with rich meta­data in the fields of small angle scat­ter­ing, macro­mol­e­c­u­lar crys­tal­log­ra­phy and cryo-elec­tron mi­croscopy will be de­scribed. [1] https://​icatproject.​org  
slides icon Slides WE3BCO07 [7.888 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO07  
About • Received ※ 05 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO08 Efficient and Automated Metadata Recording and Viewing for Scientific Experiments at MAX IV TANGO, interface, database, controls 1041
 
  • D. van Dijken, V. Da Silva, M. Eguiraun, V. Hardion, J.M. Klingberg, M. Leorato, M. Lindberg
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  With the ad­vance­ments in beam­line in­stru­men­ta­tion, syn­chro­tron re­search fa­cil­i­ties have seen a sig­nif­i­cant im­prove­ment. The de­tec­tors used today can gen­er­ate thou­sands of frames within sec­onds. Con­se­quently, an or­ga­nized and adapt­able frame­work is es­sen­tial to fa­cil­i­tate the ef­fi­cient ac­cess and as­sess­ment of the enor­mous vol­umes of data pro­duced. Our com­mu­ni­ca­tion pre­sents a meta­data man­age­ment so­lu­tion re­cently im­ple­mented at MAX IV, which au­to­mat­i­cally re­trieves and records meta­data from Tango de­vices rel­e­vant to the cur­rent ex­per­i­ment. The so­lu­tion in­cludes user-se­lected sci­en­tific meta­data and pre­de­fined de­faults re­lated to the beam­line setup, which are in­te­grated into the Sar­dana con­trol sys­tem and au­to­mat­i­cally recorded dur­ing each scan via the Sci­Fish[1] li­brary. The meta­data recorded is stored in the Sci­Cat[2] data­base, which can be ac­cessed through a web-based in­ter­face called Scan­log[3]. The in­ter­face, built on Re­ac­tJS, al­lows users to eas­ily sort, fil­ter, and ex­tract im­por­tant in­for­ma­tion from the recorded meta­data. The tool also pro­vides real-time ac­cess to meta­data, en­abling users to mon­i­tor ex­per­i­ments and ex­port data for post-pro­cess­ing. These new soft­ware tools en­sure that recorded data is find­able, ac­ces­si­ble, in­ter­op­er­a­ble and reusable (FAIR[4]) for many years to come. Col­lab­o­ra­tions are on-go­ing to de­velop these tools at other par­ti­cle ac­cel­er­a­tor re­search fa­cil­i­ties.
[1] https://gitlab.com/MaxIV/lib-maxiv-scifish
[2] https://scicatproject.github.io/
[3] https://gitlab.com/MaxIV/svc-maxiv-scanlog
[4] https://www.nature.com/articles/sdata201618
 
slides icon Slides WE3BCO08 [1.914 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO08  
About • Received ※ 06 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO09 IR of FAIR - Principles at the Instrument Level software, GUI, framework, controls 1046
 
  • G. Günther, O. Mannix, V. Serve
    HZB, Berlin, Germany
  • S. Baunack
    KPH, Mainz, Germany
  • L. Capozza, F. Maas, M.C. Wilfert
    HIM, Mainz, Germany
  • O. Freyermuth
    Uni Bonn, Bonn, Germany
  • P. Gonzalez-Caminal, S. Karstensen, A. Lindner, I. Oceano, C. Schneide, K. Schwarz, T. Schörner-Sadenius, L.-M. Stein
    DESY, Hamburg, Germany
  • B. Gou
    IMP/CAS, Lanzhou, People’s Republic of China
  • J. Isaak, S. Typel
    TU Darmstadt, Darmstadt, Germany
  • A.K. Mistry
    GSI, Darmstadt, Germany
 
  Aware­ness of the need for FAIR data man­age­ment has in­creased in re­cent years but ex­am­ples of how to achieve this are often miss­ing. Fo­cus­ing on the large-scale in­stru­ment A4 at the MAMI ac­cel­er­a­tor, we trans­fer find­ings of the EMIL pro­ject at the BESSY syn­chro­tron* to im­prove raw data, i.e. the pri­mary out­put stored on long-term basis, ac­cord­ing to the FAIR prin­ci­ples. Here, the in­stru­ment con­trol soft­ware plays a key role as the cen­tral au­thor­ity to start mea­sure­ments and or­ches­trate con­nected (meta)data-tak­ing processes. In reg­u­lar dis­cus­sions we in­cor­po­rate the ex­pe­ri­ences of a wider com­mu­nity and en­gage to op­ti­mize in­stru­ment out­put through var­i­ous mea­sures from con­ver­sion to ma­chine-read­able for­mats over meta­data en­rich­ment to ad­di­tional files cre­at­ing sci­en­tific con­text. The im­prove­ments were al­ready ap­plied to cur­rently built next gen­er­a­tion in­stru­ments and could serve as a gen­eral guide­line for pub­lish­ing data sets.
*G. Günther et al. FAIR meets EMIL: Principles in Practice. Proceedings of ICALEPCS2021, https://doi.org/10.18429/JACoW-ICALEPCS2021-WEBL05
 
slides icon Slides WE3BCO09 [1.400 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO09  
About • Received ※ 04 October 2023 — Revised ※ 24 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3AO02 High Fidelity Pulse Shaping for the National Ignition Facility target, diagnostics, timing, laser 1058
 
  • A.S. Gowda, A.I. Barnes, B.W. Buckley, A. Calonico-Soto, E.J. Carr, J.T. Chou, P.T. Devore, J.-M.G. Di Nicola, V.K. Gopalan, J. Heebner, V.J. Hernandez, R.D. Muir, A. Pao, L. Pelz, L. Wang, A.T. Wargo
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The Na­tional Ig­ni­tion Fa­cil­ity (NIF) is the world’s most en­er­getic laser ca­pa­ble of de­liv­er­ing 2.05MJ of en­ergy with peak pow­ers up to 500 ter­awatts on tar­gets a few mms in di­am­e­ter. This en­ables ex­treme con­di­tions in tem­per­a­ture and pres­sure al­low­ing a wide va­ri­ety of ex­ploratory ex­per­i­ments from trig­ger­ing fu­sion ig­ni­tion to em­u­lat­ing tem­per­a­tures at the cen­ter of stars or pres­sures at the cen­ter of giant plan­ets. The ca­pa­bil­ity en­abled the ground­break­ing re­sults of De­cem­ber 5th, 2022 when sci­en­tific breakeven in fu­sion was demon­strated with a tar­get gain of 1.5. A key as­pect of sup­port­ing var­i­ous ex­per­i­ments at NIF is the abil­ity to cus­tom shape the pulses of the 48 quads in­de­pen­dently with high fi­delity as needed by the ex­per­i­men­tal­ists. For more than 15 years, the Mas­ter Os­cil­la­tor Room’s (MOR) pulse shap­ing sys­tem has served NIF well. How­ever, a pulse shap­ing sys­tem that would pro­vide higher shot-to-shot sta­bil­ity, bet­ter power bal­ance and ac­cu­racy across the 192 beams is re­quired for fu­ture NIF ex­per­i­ments in­clud­ing ig­ni­tion. The pulse shapes re­quested vary dras­ti­cally at NIF which led to chal­leng­ing re­quire­ments for the hard­ware, tim­ing and closed loop shap­ing sys­tems. In the past two years, a High-Fi­delity Pulse Shap­ing Sys­tem was de­signed, and a proof-of-con­cept sys­tem was shown to meet all re­quire­ments. This talk will dis­cuss de­sign chal­lenges, so­lu­tions and how mod­ern­iza­tion of the pulse shap­ing hard­ware helped sim­ple con­trol al­go­rithms meet the strin­gent re­quire­ments set by the ex­per­i­men­tal­ists.
LLNL Release Number: LLNL-ABS-848060
 
slides icon Slides WE3AO02 [6.678 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3AO02  
About • Received ※ 04 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1BCO05 Diamond Light Source Athena Platform software, controls, framework, EPICS 1115
 
  • J. Shannon, C.A. Forrester, K.A. Ralphs
    DLS, Oxfordshire, United Kingdom
 
  The Athena Plat­form aims to re­place, up­grade and mod­ernise the ca­pa­bil­i­ties of Di­a­mond Light Source’s ac­qui­si­tion and con­trols tools, pro­vid­ing an en­vi­ron­ment for bet­ter in­te­gra­tion with in­for­ma­tion man­age­ment and analy­sis func­tion­al­ity. It is a ser­vice-based ex­per­i­ment or­ches­tra­tion sys­tem built on top of NSLS-II’s Python based Bluesky/Ophyd data col­lec­tion frame­work, pro­vid­ing a man­aged and ex­ten­si­ble soft­ware de­ploy­ment local to the beam­line. By using in­dus­try stan­dard in­fra­struc­ture pro­vi­sion, se­cu­rity and in­ter­face tech­nolo­gies we hope to pro­vide a suf­fi­ciently flex­i­ble and adapt­able plat­form, to meet the wide spec­trum of sci­ence use cases and beam­line op­er­a­tion mod­els in a re­li­able and main­tain­able way. In ad­di­tion to a sys­tem de­sign overview, we de­scribe here some ini­tial test de­ploy­ments of core ca­pa­bil­i­ties to a num­ber of Di­a­mond beam­lines, as well as some of the tech­nolo­gies de­vel­oped to sup­port the over­all de­liv­ery of the plat­form.  
slides icon Slides TH1BCO05 [1.409 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH1BCO05  
About • Received ※ 05 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 16 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2BCO03 The LCLS-II Experiment Control System controls, EPICS, PLC, vacuum 1172
 
  • T.A. Wallace, D.L. Flath, M. Ghaly, T.K. Johnson, K.R. Lauer, Z.L. Lentz, R.S. Tang-Kong, J. Yin
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
The Linac Co­her­ent Light Source (LCLS) has been un­der­go­ing up­grades for sev­eral years now through at least two sep­a­rate major pro­jects: LCLS-II a DOE 403.13b pro­ject re­spon­si­ble for up­grad­ing the ac­cel­er­a­tor, un­du­la­tors and some front-end beam de­liv­ery sys­tems, and the LCLS-II Strate­gic Ini­tia­tive or L2SI pro­ject which as­sumed re­spon­si­bil­ity for up­grad­ing the ex­per­i­ment end­sta­tions to fully uti­lize the new XFEL ma­chine ca­pa­bil­i­ties to be de­liv­ered by LCLS-II. Both pro­jects in­cluded scope to de­sign, in­stall and com­mis­sion a con­trol sys­tem pre­pared to han­dle the risks as­so­ci­ated with the ten­fold in­crease in beam power we will even­tu­ally achieve. This paper pro­vides an overview of the new con­trol sys­tem ar­chi­tec­ture from the LCLS-II and L2SI pro­jects and sta­tus of its com­mis­sion­ing.
 
slides icon Slides TH2BCO03 [2.700 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH2BCO03  
About • Received ※ 04 November 2023 — Accepted ※ 11 December 2023 — Issued ※ 16 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO02 Enhancing Data Management with SciCat: A Comprehensive Overview of a Metadata Catalogue for Research Infrastructures database, neutron, controls, framework 1195
 
  • C. Minotti, A. Ashton, S.E. Bliven, S. Egli
    PSI, Villigen PSI, Switzerland
  • F.B. Bolmsten, M. Novelli, T.S. Richter
    ESS, Copenhagen, Denmark
  • M. Leorato
    MAX IV Laboratory, Lund University, Lund, Sweden
  • D. McReynolds
    LBNL, Berkeley, California, USA
  • L.A. Shemilt
    RFI, Didcot, United Kingdom
 
  As the vol­ume and quan­tity of data con­tinue to in­crease, the role of data man­age­ment be­comes even more cru­cial. It is es­sen­tial to have tools that fa­cil­i­tate the man­age­ment of data in order to man­age the ever-grow­ing amount of data. Sci­Cat is a meta­data cat­a­logue that uti­lizes a NoSQL data­base, en­abling it to ac­cept het­ero­ge­neous data and cus­tomize it to meet the unique needs of sci­en­tists and fa­cil­i­ties. With its API-cen­tric ar­chi­tec­ture, Sci­Cat sim­pli­fies the in­te­gra­tion process with ex­ist­ing in­fra­struc­tures, al­low­ing for easy ac­cess to its ca­pa­bil­i­ties and seam­less in­te­gra­tion into work­flows, in­clud­ing cloud-based sys­tems. The ses­sion aims to pro­vide a com­pre­hen­sive in­tro­duc­tion of Sci­Cat, a meta­data cat­a­logue started as a col­lab­o­ra­tion be­tween PSI, ESS, and MAXIV, which has been adopted by nu­mer­ous Re­search In­fra­struc­tures (RIs) world­wide. The pre­sen­ta­tion will delve into the guid­ing prin­ci­ples that un­der­pin this pro­ject and the chal­lenges that it en­deav­ours to ad­dress. More­over, it will show­case the fea­tures that have been im­ple­mented, start­ing from the in­ges­tion of data to its even­tual pub­li­ca­tion. Given the grow­ing im­por­tance of the FAIR (Find­able, Ac­ces­si­ble, In­ter­op­er­a­ble, and Reusable) prin­ci­ples, the pre­sen­ta­tion will touch upon how their up­take is fa­cil­i­tated and will also pro­vide an overview of the work car­ried out under the Hori­zon 2020 EU grant for FAIR.  
slides icon Slides THMBCMO02 [5.158 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO02  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO17 FAIR Data of Physical and Digital Beamlines simulation, software, controls, GUI 1231
 
  • G. Günther, O. Mannix, O. Ruslan, S. Vadilonga
    HZB, Berlin, Germany
 
  Sim­u­la­tions play a cru­cial role in in­stru­ment de­sign, as a dig­i­tal pre­cur­sor of a real-world ob­ject they con­tain a com­pre­hen­sive de­scrip­tion of the setup. Un­for­tu­nately, this dig­i­tal rep­re­sen­ta­tion is often ne­glected once the real in­stru­ment is fully com­mis­sioned. To pre­serve the sym­bio­sis of sim­u­lated and real-world in­stru­ment be­yond com­mis­sion­ing we con­nect the two worlds through the in­stru­ment con­trol soft­ware. The in­stru­ment con­trol si­mul­ta­ne­ously starts mea­sure­ments and sim­u­la­tions, re­ceives feed­back from both, and di­rects (meta)data to a NeXus file - a stan­dard for­mat in pho­ton and neu­tron sci­ence. The in­stru­ment sec­tion of the pro­duced NeXus file is en­riched with de­tailed sim­u­la­tion pa­ra­me­ters where the cur­rent state of the in­stru­ment is re­flected by in­clud­ing real motor po­si­tions such as in­cor­po­rat­ing the ac­tual aper­ture of a slit sys­tem. As a re­sult, the en­riched in­stru­ment de­scrip­tion in­creases the reusabil­ity of ex­per­i­men­tal data in sense of the FAIR prin­ci­ples. The data is ready to be ex­ploited by ma­chine-learn­ing tech­niques, such as for pre­dic­tive main­te­nance ap­pli­ca­tions as it is pos­si­ble to per­form sim­u­la­tions of a mea­sure­ment di­rectly from the NeXus file. The re­al­iza­tion at the Aquar­ius beam­line * at Bessy II in con­nec­tion with the Ray-UI sim­u­la­tion soft­ware ** and RayPyNG API *** serves as a pro­to­type for a more gen­eral ap­pli­ca­tion.
* https://www.helmholtz-berlin.de/forschung/oe/wi/optik-strahlrohre/projekte/aquariusen.html
** https://doi.org/10.1063/1.5084665
*** https://pypi.org/project/raypyng
 
slides icon Slides THMBCMO17 [0.632 MB]  
poster icon Poster THMBCMO17 [0.828 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO17  
About • Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 14 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO18 Advancements in Beamline Digital Twin at BESSYII simulation, operation, software, MMI 1236
 
  • S. Vadilonga, G. Günther, S. Kazarski, R. Ovsyannikov, S.S. Sachse, W. Smith
    HZB, Berlin, Germany
 
  This pre­sen­ta­tion re­ports on the sta­tus of beam­line dig­i­tal twins at BESSY II. To pro­vide a com­pre­hen­sive beam­line sim­u­la­tion ex­pe­ri­ence we have lever­aged BESSY II’s x-ray trac­ing pro­gram, RAY-UI[*], widely used for beam­line de­sign and com­mis­sion­ing and best adapted to the re­quire­ments of our soft X-ray source BESSY II. We cre­ated a Python API, RayPyNG, ca­pa­ble to con­vert our li­brary of beam­line con­fig­u­ra­tion files pro­duced by RAY-UI into Python ob­jects[**]. This al­lows to embed beam­line sim­u­la­tion into Bluesky[***], our ex­per­i­men­tal con­trols soft­ware ecosys­tem. All op­ti­cal el­e­ments are mapped di­rectly into the Bluesky de­vice ab­strac­tion (Ophyd). Thus beam­line op­er­a­tors can run sim­u­la­tions and op­er­ate real sys­tems by a com­mon in­ter­face, al­low­ing to di­rectly com­pare the­ory pre­dic­tions with real-time re­sults[****]. We will dis­cuss the rel­e­vance of this dig­i­tal twin for process tun­ing in terms of en­hanced beam­line per­for­mance and stream­lined op­er­a­tions. We will shortly dis­cuss al­ter­na­tives to RAY-UI like other soft­ware pack­ages and ML/AI sur­ro­gate mod­els.
[*]https://doi.org/10.1063/1.5084665
[**]https://raypyng.readthedocs.io/
[***]https://doi.org/10.1080/08940886.2019.1608121
[****]https://raypyng-bluesky.readthedocs.io/
 
slides icon Slides THMBCMO18 [0.333 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO18  
About • Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 16 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO22 Towards Defining a Synchronization Standard Between Beamline Components and Synchrotron Accelerators interface, hardware, FPGA, synchrotron 1242
 
  • J.A. Avila-Abellan, X. Serra-Gallifa
    ALBA-CELLS, Cerdanyola del Vallès, Spain
  • T.M. Cobb
    DLS, Oxfordshire, United Kingdom
  • R. Hino
    ESRF, Grenoble, France
  • O.H. Seeck
    DESY, Hamburg, Germany
  • S. Zhang
    SOLEIL, Gif-sur-Yvette, France
 
  Funding: LEAPS-INNOV project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 101004728
Stan­dard­iza­tion is a magic word in the elec­tron­ics en­gi­neer­ing jar­gon. Under its um­brella, it is gen­er­ated the utopia of trans­par­ent in­te­gra­tion with the rest of the parts with min­i­mal extra ef­fort for the soft­ware in­te­gra­tion. But the ex­per­i­men­tal setup in a syn­chro­tron beam­line pre­sents mul­ti­ple chal­lenges: it is highly dy­namic and di­verse. In the frame of LEAPS-IN­NOV pro­ject (*), the Task 3 of Work Pack­age 5 aims to de­fine a stan­dard for syn­chro­niza­tion in the beam­line sam­ple en­vi­ron­ment. Their part­ners (ALBA, DESY, DLS, ESRF and SOLEIL) have al­ready reached a com­mon vi­sion of syn­chro­niza­tion re­quire­ments. This paper first de­tails the par­tic­i­pants’ ac­tual syn­chro­niza­tion needs on their fa­cil­i­ties. Next, the re­quire­ments fore­seen for the fu­ture are out­lined in terms of in­ter­faces, time con­straints and com­pat­i­bil­ity with tim­ing sys­tems. To con­clude, we sum­ma­rize the cur­rent state of the pro­ject: the hard­ware in­ter­faces and the hard­ware plat­form de­f­i­n­i­tion. They both have been de­cided con­sid­er­ing long-term avail­abil­ity, use of stan­dard sub-com­po­nents, and keep­ing the com­pro­mise be­tween cost, de­vel­op­ment time, main­te­nance, re­li­a­bil­ity, flex­i­bil­ity and per­for­mance. This hard­ware ar­chi­tec­ture pro­posal meets the iden­ti­fied re­quire­ments. In the fu­ture, under the scope of LEAPS-IN­NOV, a demon­stra­tor will be built, and we will work with the in­dus­try for its fu­ture com­mer­cial­iza­tion.
 
slides icon Slides THMBCMO22 [1.592 MB]  
poster icon Poster THMBCMO22 [0.760 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO22  
About • Received ※ 06 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO29 Motion Controls for ORNL Neutron Science Experimental Beamlines controls, EPICS, HOM, software 1261
 
  • X. Geng, A. Groff, M.R. Pearson, G. Taufer
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy
This paper pre­sents a com­pre­hen­sive overview of the mo­tion con­trol sys­tems em­ployed within the neu­tron sci­ence user fa­cil­i­ties at Oak Ridge Na­tional Lab­o­ra­tory (ORNL). The Spal­la­tion Neu­tron Source (SNS) and the High Flux Iso­tope Re­ac­tor (HFIR) at ORNL have a total of 35 neu­tron beam lines with nu­mer­ous mo­tors for mo-tion con­trol. The mo­tion sys­tems vary in com­plex­ity from a lin­ear sam­ple po­si­tion­ing stage to multi-axis end sta­tions. To en­hance the ca­pa­bil­i­ties of these mo­tion sys­tems, a con­certed ef­fort has been made to es­tab­lish stan­dard­ized hard­ware and flex­i­ble soft­ware that im­prove per­for­mance, in­crease re­li­a­bil­ity and pro­vide the ca­pa­bil­ity for au­to­mated ex­per­i­ments. The re­port dis­cusses the var­i­ous mo­tion con­trollers used, the EPICS-based IOCs (Input Out­put Con­trollers), high-level mo­tion soft­ware, and plans for on­go­ing up­grades and new pro­jects.
 
slides icon Slides THMBCMO29 [1.893 MB]  
poster icon Poster THMBCMO29 [6.483 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO29  
About • Received ※ 05 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 22 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO31 LImA2: Edge Distributed Acquisition and Processing Framework for High Performance 2D Detectors detector, controls, SRF, GPU 1269
 
  • S. Debionne, L. Claustre, P. Fajardo, A. Götz, A. Homs Puron, J. Kieffer, R. Ponsard
    ESRF, Grenoble, France
 
  LImA* is a frame­work born at the ESRF for 2D Data Ac­qui­si­tion (DAQ), basic On­line Data Analy­sis (ODA) and pro­cess­ing with high-through­put de­tec­tors. While in pro­duc­tion for 15 years in sev­eral syn­chro­tron fa­cil­i­ties, the ever-in­creas­ing de­tec­tor frame rates make more and more dif­fi­cult per­form­ing DAQ & ODA tasks on a sin­gle com­puter**. LImA2 is de­signed to scale hor­i­zon­tally, using mul­ti­ple hosts for DAQ & ODA. This en­ables more ad­vanced strate­gies for data fea­ture ex­trac­tion while keep­ing a low la­tency. LImA2 sep­a­rates three func­tional blocks: de­tec­tor con­trol, image ac­qui­si­tion, and data pro­cess­ing. A con­trol process con­fig­ures the de­tec­tor, while one or more re­ceiver processes per­form the DAQ and ODA, like the gen­er­a­tion of fast feed­back sig­nals. The de­tec­tors cur­rently sup­ported in LImA2 are the PSI/Jungfrau, the ESRF/Smart­pix and the Dec­tris/Eiger2. The for­mer per­forms pixel as­sem­bly and in­ten­sity cor­rec­tion in GPU; the sec­ond ex­ploits RoCE ca­pa­bil­i­ties; and the lat­ter fea­tures dual thresh­old, multi-band im­ages. Raw data rates up to 8 GByte/s can be han­dled by a sin­gle com­puter, scal­able if nec­es­sary. In ad­di­tion to a clas­sic pro­cess­ing, ad­vanced pipelines are also im­ple­mented. A Se­r­ial-MX/pyFAI*** pipeline ex­tracts dif­frac­tion peaks in GPU in order to fil­ter low qual­ity data. NVIDIA GPUDi­rect is used by a third pipeline pro­vid­ing 2D pro­cess­ing with re­mark­able low la­tency. IBM Pow­er9 op­ti­miza­tions like the NX GZIP com­pres­sion and the PCI-e multi-host ex­ten­sion are ex­ploited.
* LIMA - https://accelconf.web.cern.ch/ICALEPCS2013/papers/frcoaab08.pdf
** Jungfraujoch - https://doi.org/10.1107/S1600577522010268
*** pyFAI - https://doi.org/10.1107/S1600576715004306
 
slides icon Slides THMBCMO31 [0.572 MB]  
poster icon Poster THMBCMO31 [14.959 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO31  
About • Received ※ 06 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO34 Ultra-High Throughput Automated Macromolecular Crystallography Data Collection Using the Bluesky Framework software, controls, data-acquisition, hardware 1280
 
  • D.P. Perl, N. Frisina, D.E. Oram, N.P. Paterson
    DLS, Oxfordshire, United Kingdom
 
  At Di­a­mond Light Source, sev­eral Macro­mol­e­c­u­lar Crys­tal­log­ra­phy (MX) beam­lines focus on, or in­clude, com­pletely au­to­mated data col­lec­tion. This is used pri­mar­ily for high through­put col­lec­tion on sam­ples with known or par­tially known struc­tures, for ex­am­ple, screen­ing a pro­tein for drug or drug frag­ment in­ter­ac­tions. The au­to­mated data col­lec­tion rou­tines are cur­rently built on legacy ex­per­i­ment or­ches­tra­tion soft­ware which in­cludes a lot of re­dun­dancy orig­i­nally im­ple­mented for safety when human users are con­trol­ling the beam­line, but which is in­ef­fi­cient when the beam­line hard­ware oc­cu­pies a smaller num­ber of known states. Di­a­mond is build­ing its next gen­er­a­tion, ser­vice-based, Data Ac­qui­si­tion Plat­form, Athena, using NSLSII’s Bluesky ex­per­i­ment or­ches­tra­tion li­brary. The Bluesky li­brary fa­cil­i­tates op­ti­mis­ing the or­ches­tra­tion of ex­per­i­ment con­trol by sim­pli­fy­ing the work nec­es­sary to par­al­lelise and re­or­gan­ise the steps of an ex­per­i­men­tal pro­ce­dure. The MX data ac­qui­si­tion team at Di­a­mond is using the Athena plat­form to in­crease the pos­si­ble rate of au­to­mated MX data col­lec­tion both for im­me­di­ate use and in prepa­ra­tion to take ad­van­tage of the up­graded Di­a­mond-II syn­chro­tron, due in sev­eral years. This pro­ject, named Hy­pe­r­ion, will in­clude sam­ple ori­en­ta­tion and cen­tring, flu­o­res­cence scan­ning, op­ti­cal mon­i­tor­ing, col­lec­tion strat­egy de­ter­mi­na­tion, and ro­ta­tion data col­lec­tion at mul­ti­ple po­si­tions on a sin­gle sam­ple pin.  
slides icon Slides THMBCMO34 [1.002 MB]  
poster icon Poster THMBCMO34 [3.445 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO34  
About • Received ※ 04 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP012 Evolution of the Laser Megajoule Timing System laser, timing, diagnostics, target 1312
 
  • T. Somerlinck
    CEA, LE BARP cedex, France
  • S. Hocquet, D. Monnier-Bourdin
    Greenfield Technology, Massy, France
 
  The Laser Mega­Joule (LMJ), a 176-beam laser fa­cil­ity de­vel­oped by CEA, is lo­cated at the CEA CESTA site near Bor­deaux. The LMJ fa­cil­ity is part of the French Sim­u­la­tion Pro­gram, which com­bines im­prove­ment of the­o­ret­i­cal mod­els and data used in var­i­ous fields of physics, high per­for­mance nu­mer­i­cal sim­u­la­tions and ex­per­i­men­tal val­i­da­tion. It is de­signed to de­liver about 1.4 MJ of en­ergy on tar­gets, for high en­ergy den­sity physics ex­per­i­ments, in­clud­ing fu­sion ex­per­i­ments. With 120 op­er­a­tional beams at the end of 2023, op­er­a­tional ca­pa­bil­i­ties are grad­u­ally in­creas­ing until the full com­ple­tion of the LMJ fa­cil­ity by 2025. To ver­ify the syn­chro­niza­tion of the pre­cise delay gen­er­a­tors, used on each bun­dle, a new tim­ing di­ag­nos­tic has been de­signed to ob­serve the 1w and 3w fidu­cial sig­nals. Mean­while, due to elec­tronic ob­so­les­cence, a new mod­i­fied pro­to­type pre­cise of a delay gen­er­a­tor, with ’new and old chan­nels’, has been tested and com­pared. In this paper, a re­view of the LMJ syn­chro­niza­tion re­port is given with a de­scrip­tion of the first tim­ing di­ag­nos­tic as well as an overview of the LMJ delay gen­er­a­tor ob­so­les­cence up­date. It also pre­sents some leads for a fu­ture tim­ing sys­tem.
LMJ: Laser MegaJoule
CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives
 
poster icon Poster THPDP012 [3.535 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP012  
About • Received ※ 10 October 2023 — Revised ※ 14 November 2023 — Accepted ※ 19 December 2023 — Issued ※ 21 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP014 SECoP and SECoP@HMC - Metadata in the Sample Environment Communication Protocol controls, software, neutron, interface 1322
 
  • K. Kiefer, B. Klemke, L. Rossa, P. Wegmann
    HZB, Berlin, Germany
  • G. Brandl, E. Faulhaber, A. Zaft
    MLZ, Garching, Germany
  • N. Ekström, A. Pettersson
    ESS, Lund, Sweden
  • J. Kotanski, T. Kracht
    DESY, Hamburg, Germany
  • M. Zolliker
    PSI, Villigen PSI, Switzerland
 
  Funding: The project SECoP@HMC receives funding by the Helmholtz Association’s Initiative and Networking Fund (IVF).
The in­te­gra­tion of sam­ple en­vi­ron­ment (SE) equip­ment in x-ray and neu­tron ex­per­i­ments is a com­plex chal­lenge both in the phys­i­cal world and in the dig­i­tal world. Dif-fer­ent ex­per­i­ment con­trol soft­ware offer dif­fer­ent in­ter­fac-es for the con­nec­tion of SE equip­ment. There­fore, it is time-con­sum­ing to in­te­grate new SE or to share SE equip­ment be­tween fa­cil­i­ties. To tackle this prob­lem, the In­ter­na­tional So­ci­ety for Sam­ple En­vi­ron­ment (ISSE, [1]) de­vel­oped the Sam­ple En­vi­ron­ment Com­mu­ni­ca­tion Pro­to­col (SECoP) to stan­dard­ize the com­mu­ni­ca­tion be­tween in­stru­ment con­trol soft­ware and SE equip­ment [2]. SECoP of­fers, on the one hand, a gen­er­al­ized way to con­trol SE equip­ment. On the other hand, SECoP holds the pos­si­bil­ity to trans­port SE meta­data in a well-de­fined way. In ad­di­tion, SECoP pro­vides ma­chine read­able self-de­scrip­tion of the SE equip­ment which en­ables a fully au­to­mated in­te­gra­tion into the in­stru­ment con­trol soft-ware and into the processes for data stor­age. Using SECoP as a com­mon stan­dard for con­trol­ling SE equip­ment and gen­er­at­ing SE meta­data will save re­sources and in­trinsi-cally give the op­por­tu­nity to sup­ply stan­dard­ized and FAIR data com­pli­ant SE meta­data. It will also sup­ply a well-de­fined in­ter­face for user-pro­vided SE equip­ment, for equip­ment shared by dif­fer­ent re­search fa­cil­i­ties and for in­dus­try. In this ar­ti­cle will show how SECoP can help to pro­vide a mean­ing­ful and com­plete set of meta­data for SE equip­ment and we will pre­sent SECoP and the SECoP@​HMC pro­ject sup­ported by the Helmholtz Meta­data Col­lab­o­ra­tion.
*K. Kiefer, et al. (2020). An introduction to SECoP - the sample environment communication protocol. Journal of Neutron Research, 21(3-4), pp.181-195
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP014  
About • Received ※ 06 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 22 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP017 A Data Acquisition Middle Layer Server with Python Support for Linac Operation and Experiments Monitoring and Control cavity, FEL, controls, operation 1330
 
  • V. Rybnikov, A. Sulc
    DESY, Hamburg, Germany
 
  This paper pre­sents on­line anom­aly de­tec­tion on low-level radio fre­quency (LLRF) cav­i­ties run­ning on FLASH/XFEL DAQ sys­tem*. The code is run by a DAQ Mid­dle Layer (ML) server, which has on-line ac­cess to all col­lected data. The ML server ex­e­cutes a Python script that runs a pre-trained ma­chine learn­ing model on every shot in the FLASH/XFEL ma­chine. We dis­cuss the chal­lenges as­so­ci­ated with real-time anom­aly de­tec­tion due to high data rates gen­er­ated by RF cav­i­ties, and in­tro­duce a DAQ sys­tem pipeline and al­go­rithms used for on­line de­tec­tion on ar­bi­trary chan­nels in our con­trol sys­tem. The sys­tem’s per­for­mance is eval­u­ated using real data from op­er­a­tional RF cav­i­ties. We also focus on the DAQ mon­i­tor server’s fea­tures and its im­ple­men­ta­tion.
*A. Aghababyan et al., ’Multi-Processor Based Fast Data Acquisition for a Free Electron Laser and Experiments’, in IEEE Transactions on Nuclear Science, vol. 55, No. 1, pp. 256-260, February 2008
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP017  
About • Received ※ 02 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP036 Research on HALF Historical Data Archiver Technology database, EPICS, controls, distributed 1394
 
  • X.K. Sun, D.D. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • H. Chen
    USTC, SNST, Anhui, People’s Republic of China
 
  The Hefei Ad­vanced Light Fa­cil­ity (HALF) is a 2.2-GeV 4th syn­chro­tron ra­di­a­tion light source, which is sched­uled to start con­struc­tion in Hefei, China in 2023. The HALF con­tains an in­jec­tor and a 480-m dif­frac­tion lim­ited stor­age ring, and 10 beam­lines for phase one. The HALF his­tor­i­cal data archiver sys­tem is re­spon­si­ble to store op­er­a­tion data for the en­tire fa­cil­ity in­clud­ing ac­cel­er­a­tor and beam­lines. It is nec­es­sary to choose a high-per­for­mance data­base for the mas­sive struc­tured data gen­er­ated by HALF. A fair test plat­form is de­signed and built to test the per­for­mance of six com­monly used data­bases in the ac­cel­er­a­tor field. The test met­rics in­clude read­ing and writ­ing per­for­mance, avail­abil­ity, scal­a­bil­ity, and soft­ware ecosys­tem. This paper in­tro­duces the de­sign of the data­base test scheme, the con­struc­tion of the test plat­form and the fu­ture test plan in de­tail.  
poster icon Poster THPDP036 [0.933 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP036  
About • Received ※ 28 September 2023 — Revised ※ 26 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP040 Control System of the ForMAX Beamline at the MAX IV Synchrotron controls, detector, TANGO, synchrotron 1402
 
  • W.T. Kitka
    S2Innovation, Kraków, Poland
  • V. Da Silva, V.H. Haghighat, Y.L. Li, J. Lidón-Simon, M. Lindberg, S. Malki, K. Nygård, E. Rosendahl
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  This paper de­scribes the de­sign and im­ple­men­ta­tion of the con­trol sys­tem for the For­MAX beam­line at the MAX IV syn­chro­tron. MAX IV is a Swedish na­tional lab­o­ra­tory that houses one of the bright­est syn­chro­tron light sources in the world. For­MAX is one of the beam­lines at MAX IV and is funded by the Knut and Alice Wal­len­berg Foun­da­tion and Swedish in­dus­try via Treesearch. To meet the spe­cific de­mands of For­MAX, a new con­trol sys­tem was de­vel­oped using the TANGO Con­trols and Sar­dana frame­works. Using these frame­works en­ables seam­less in­te­gra­tion of hard­ware and soft­ware, en­sur­ing ef­fi­cient and re­li­able beam­line op­er­a­tion. The con­trol sys­tem was de­signed to sup­port a va­ri­ety of ex­per­i­ments, in­clud­ing mul­ti­scale struc­tural char­ac­ter­i­za­tion from nanome­ter to mil­lime­ter length scales by com­bin­ing full-field to­mo­graphic imag­ing, small- and wide-an­gle X-ray scat­ter­ing (SWAXS), and scan­ning SWAXS imag­ing in a sin­gle in­stru­ment. The sys­tem al­lows for pre­cise con­trol of the beam po­si­tion, en­ergy, in­ten­sity, and sam­ple po­si­tion. Fur­ther­more, the sys­tem pro­vides real-time feed­back on the sta­tus of the ex­per­i­ments, al­low­ing for ad­just­ments to be made quickly and ef­fi­ciently. In con­clu­sion, the de­sign and im­ple­men­ta­tion of the con­trol sys­tem for the For­MAX beam­line at the MAX IV syn­chro­tron has re­sulted in a highly flex­i­ble and ef­fi­cient ex­per­i­men­tal sta­tion. TANGO Con­trols and Sar­dana have al­lowed for seam­less in­te­gra­tion of hard­ware and soft­ware, en­abling pre­cise and re­li­able con­trol of the beam­line for a wide range of ex­per­i­ments.  
poster icon Poster THPDP040 [0.668 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP040  
About • Received ※ 04 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP066 Visualization Tools to Monitor Structure and Growth of an Existing Control System detector, controls, software, operation 1485
 
  • O. Pinazza, A. Augustinus, P.M. Bond, P.Ch. Chochula, A.N. Kurepin, M. Lechman, D. Voscek
    CERN, Meyrin, Switzerland
  • A.N. Kurepin
    RAS/INR, Moscow, Russia
 
  The ALICE ex­per­i­ment at the LHC has al­ready been in op­er­a­tion for 15 years, and dur­ing its life sev­eral de­tec­tors have been re­placed, new in­stru­ments in­stalled, and some tech­nolo­gies changed. The con­trol sys­tem has there­fore also had to adapt, evolve and ex­pand, some­times de­part­ing from the sym­me­try and com­pact­ness of the orig­i­nal de­sign. In a large col­lab­o­ra­tion, dif­fer­ent groups con­tribute to the de­vel­op­ment of the con­trol sys­tem of their de­tec­tor. For the cen­tral co­or­di­na­tion it is im­por­tant to main­tain the overview of the in­te­grated con­trol sys­tem to as­sure its co­her­ence. Tools to vi­su­al­ize the struc­ture and other crit­i­cal as­pects of the sys­tem can be of great help and can high­light prob­lems or fea­tures of the con­trol sys­tem such as de­vi­a­tions from the agreed ar­chi­tec­ture. This paper will pre­sent that ex­ist­ing tools, such as graph­i­cal wid­gets avail­able in the pub­lic do­main, or tech­niques typ­i­cal of sci­en­tific analy­sis, can be adapted and help as­sess the co­her­ence of the de­vel­op­ment, re­veal­ing any weak­nesses and high­light­ing the in­ter­de­pen­dence of parts of the sys­tem. We show how we have used some of these tech­niques to analyse the co­her­ence of the ALICE con­trol sys­tem, and how this con­tributed to point­ing out crit­i­cal­i­ties and key points.  
poster icon Poster THPDP066 [13.717 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP066  
About • Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP073 Scilog: A Flexible Logbook System for Experiment Data Management database, target, controls, GUI 1512
 
  • K. Wakonig, A. Ashton, C. Minotti
    PSI, Villigen PSI, Switzerland
 
  Cap­tur­ing both raw and meta­data dur­ing an ex­per­i­ment is of the ut­most im­por­tance, as it pro­vides valu­able con­text for the de­ci­sions made dur­ing the ex­per­i­ment and the ac­qui­si­tion strat­egy. How­ever, log­books often lack seam­less in­te­gra­tion with fa­cil­ity-spe­cific ser­vices such as au­then­ti­ca­tion and data ac­qui­si­tion sys­tems and can prove to be a bur­den, par­tic­u­larly in high-pres­sure sit­u­a­tions dur­ing ex­per­i­ments. To ad­dress these chal­lenges, SciLog has been de­vel­oped as a log­book sys­tem uti­liz­ing Mon­goDB, Loop­back, and An­gu­lar. Its pri­mary ob­jec­tive is to pro­vide a flex­i­ble and ex­ten­si­ble en­vi­ron­ment, as well as a user-friendly in­ter­face. SciLog re­lies on atomic en­tries in a NoSQL data­base that can be eas­ily queried, sorted, and dis­played ac­cord­ing to the user’s re­quire­ments. The in­te­gra­tion with fa­cil­ity-spe­cific au­tho­riza­tion sys­tems and the au­to­matic im­port of new ex­per­i­ment pro­pos­als en­able a user ex­pe­ri­ence that is specif­i­cally tai­lored for the chal­leng­ing en­vi­ron­ment of ex­per­i­ments con­ducted at large re­search fa­cil­i­ties. The sys­tem is cur­rently in use dur­ing beam time at the Paul Scher­rer In­sti­tut, where it is col­lect­ing valu­able feed­back from sci­en­tists to en­hance its ca­pa­bil­i­ties.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP073  
About • Received ※ 05 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 11 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP082 Teaching an Old Accelerator New Tricks database, controls, operation, linac 1545
 
  • D.J. Novak, K.J. Bunnell, C. Dickerson, D. Stanton
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. This research used resources of ANLs ATLAS facility, which is a DOE Office of Science User Facility.
The Ar­gonne Tan­dem Linac Ac­cel­er­a­tor Sys­tem (ATLAS) has been a Na­tional User Fa­cil­ity since 1985. In that time, many of the sys­tems that help op­er­a­tors re­trieve, mod­ify, and store beam­line pa­ra­me­ters have not kept pace with the ad­vance­ment of tech­nol­ogy. De­vel­op­ment of a new method of stor­ing and re­triev­ing beam­line pa­ra­me­ters re­sulted in the test­ing and in­stal­la­tion of a time-se­ries data­base as a po­ten­tial re­place­ment for the tra­di­tional re­la­tional data­base. In­fluxDB was se­lected due to its self-hosted Open-Source ver­sion avail­abil­ity as well as the sim­plic­ity of in­stal­la­tion and setup. A pro­gram was writ­ten to pe­ri­od­i­cally gather all ac­cel­er­a­tor pa­ra­me­ters in the con­trol sys­tem and store them in the time-se­ries data­base. This re­sulted in over 13,000 dis­tinct data points, cap­tured at 5-minute in­ter­vals. A sec­ond test cap­tured 35 chan­nels on a 1-minute ca­dence. Graph­ing of the cap­tured data is being done on Grafana, an Open-Source ver­sion is avail­able that co-ex­ists well with In­fluxDB as the back-end. Grafana made vi­su­al­iz­ing the data sim­ple and flex­i­ble. The test­ing has al­lowed for the use of mod­ern graph­ing tools to gen­er­ate new in­sights into op­er­at­ing the ac­cel­er­a­tor, as well as opened the door to build­ing large data sets suit­able for Ar­ti­fi­cial In­tel­li­gence and Ma­chine Learn­ing ap­pli­ca­tions.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP082  
About • Received ※ 10 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP101 Creating of HDF5 Files as Data Source for Analyses Using the Example of ALPS IIc and the DOOCS Control System controls, software, photon, GUI 1570
 
  • S. Karstensen, P. Gonzalez-Caminal, A. Lindner, I. Oceano, V. Rybnikov, K. Schwarz, G. Sedov
    DESY, Hamburg, Germany
  • G. Günther, O. Mannix
    HZB, Berlin, Germany
 
  ALPS II is a light-shin­ing through a wall (LSW) ex­per­i­ment to search for WISPs (very Weakly In­ter­act­ing Slim Par­ti­cles). Po­ten­tial WISP can­di­dates are ax­ion-like par­ti­cles or hid­den sec­tor pho­tons. Ax­ion-like par­ti­cles may con­vert to light (and vice versa) in pres­ence of a mag­netic field. Sim­i­larly, hid­den sec­tor pho­tons "mix" with light in­de­pen­dent of any mag­netic fields. This is ex­ploited by ALPS II- Light from strong laser is shone into a mag­netic field. Laser pho­tons can be con­verted into a WISPs in front of a light-block­ing bar­rier and re­con­verted into pho­tons be­hind that bar­rier.  The ex­per­i­ment ex­ploits op­ti­cal res­onators for laser power build-up in a large-scale op­ti­cal cav­ity to boost the avail­able power for the WISP pro­duc­tion as well as their re­con­ver­sion prob­a­bil­ity to light. The Dis­trib­uted Ob­ject-Ori­ented Con­trol Sys­tem - DOOCS - pro­vides a ver­sa­tile soft­ware frame­work for cre­at­ing ac­cel­er­a­tor-based con­trol sys­tem ap­pli­ca­tions. These can range from mon­i­tor­ing sim­ple tem­per­a­ture sen­sors up to high-level con­trols and feed­backs of beam pa­ra­me­ters as re­quired for com­plex ac­cel­er­a­tor op­er­a­tions. In order to en­able data analy­sis by re­searchers who do not have ac­cess to the DOOCS in­ter­nal con­trol sys­tem to read mea­sured val­ues, the mea­sure­ment and con­trol data are ex­tracted from the con­trol sys­tem and saved in HDF5 file for­mat. Through this process, the data is de­cou­pled from the con­trol sys­tem and can be analysed on the NAF com­puter sys­tem, among other things. NodeRed acts here as a graph­i­cal tool for cre­at­ing HDF5 files.  
poster icon Poster THPDP101 [50.659 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP101  
About • Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THSDSC03 Integrate EPICS 7 with MATLAB Using PVAccess for Python (P4P) Module EPICS, controls, interface, status 1580
 
  • K.T. Kim, J.J. Bellister, K.H. Kim, E. Williams, S. Zelazny
    SLAC, Menlo Park, California, USA
 
  MAT­LAB is es­sen­tial for ac­cel­er­a­tor sci­en­tists en­gaged in data analy­sis and pro­cess­ing across di­verse fields, in­clud­ing par­ti­cle physics ex­per­i­ments, syn­chro­tron light sources, XFELs, and tele­scopes, due to its ex­ten­sive range of built-in func­tions and tools. Sci­en­tists also de­pend on EPICS 7* to con­trol and mon­i­tor com­plex sys­tems. Since Python has gained pop­u­lar­ity in the sci­en­tific com­mu­nity and many fa­cil­i­ties have been mi­grat­ing to­wards it, SLAC has de­vel­oped mat­pva, a Python in­ter­face to in­te­grate EPICS 7 with MAT­LAB. Mat­pva uti­lizes the Python P4P mod­ule** and EPICS 7 to offer a ro­bust and re­li­able in­ter­face for MAT­LAB users that em­ploy EPICS 7. The EPICS 7 PVAc­cess API al­lows higher-level sci­en­tific ap­pli­ca­tions to get/set/mon­i­tor sim­ple and com­plex struc­tures from an EPICS 7-based con­trol sys­tem. More­over, mat­pva sim­pli­fies the process by han­dling the data type con­ver­sion from Python to MAT­LAB, mak­ing it eas­ier for re­searchers to focus on their analy­ses and in­no­v­a­tive ideas in­stead of tech­ni­cal data con­ver­sion. By lever­ag­ing mat­pva, re­searchers can work more ef­fi­ciently and make dis­cov­er­ies in di­verse fields, in­clud­ing par­ti­cle physics and as­tron­omy.
* See https://epics-controls.org/resources-and-support/base/epics-7/ to learn more about EPICS 7
** Visit https://mdavidsaver.github.io/p4p/ to learn more about the P4P
 
poster icon Poster THSDSC03 [0.865 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THSDSC03  
About • Received ※ 06 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1BCO04 The Controls and Science IT Project for the SLS 2.0 Upgrade controls, network, storage-ring, EPICS 1616
 
  • A. Ashton, H.-H. Braun, S. Fries, X. Yao, E. Zimoch
    PSI, Villigen PSI, Switzerland
 
  Op­er­a­tion of the Swiss Light Source (SLS) at the Paul Scher­rer In­stitue (PSI) in Switzer­land began in 2000 and it quickly be­came one of the most suc­cess­ful syn­chro­tron ra­di­a­tion fa­cil­i­ties world­wide, pro­vid­ing aca­d­e­mic and in­dus­try users with a suite of ex­cel­lent beam­lines cov­er­ing a wide range of meth­ods and ap­pli­ca­tions. To main­tain the SLS at the fore­front of syn­chro­tron user fa­cil­i­ties and to ex­ploit all of the im­prove­ment op­por­tu­ni­ties, PSI pre­pared a major up­grade pro­ject for SLS, named SLS 2.0. The Con­trols and Sci­ence IT (CaSIT) sub­pro­ject was es­tab­lished to help in­sti­gate a pro­ject man­age­ment struc­ture to fa­cil­i­tate new con­cepts, in­creased com­mu­ni­ca­tion, and clar­ify bud­getary re­spon­si­bil­ity. This ar­ti­cle fo­cusses on the progress being made to ex­ploit the cur­rent tech­no­log­i­cal op­por­tu­ni­ties of­fered by a break in op­er­a­tions whilst tak­ing into con­sid­er­a­tion fu­ture growth op­por­tu­ni­ties and re­al­is­tic op­er­a­tional sup­port within an aca­d­e­mic re­search fa­cil­ity.  
slides icon Slides FR1BCO04 [6.389 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR1BCO04  
About • Received ※ 05 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 20 November 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR2AO01 How Accurate Laser Physics Modeling Is Enabling Nuclear Fusion Ignition Experiments laser, target, optics, software 1620
 
  • K.P. McCandless, R.H. Aden, A. Bhasker, R.T. Deveno, J.-M.G. Di Nicola, M. Erickson, T.E. Lanier, S.A. McLaren, G. Mennerat, F.X. Morrissey, J. Penner, T. Petersen, B.A. Raymond, S.E. Schrauth, M.F. Tam, K. Varadan, L. Waxer
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
This last year we achieved an im­por­tant mile­stone by reach­ing fu­sion ig­ni­tion at Lawrence Liv­er­more Na­tional Lab­o­ra­tory’s (LLNL) Na­tional Ig­ni­tion Fa­cil­ity (NIF), a multi-decadal ef­fort in­volv­ing a large col­lab­o­ra­tion. The NIF fa­cil­ity con­tains a 192-beam 4.2 MJ neodymium glass laser (around 1053 nm) that is fre­quency con­verted to 351 nm light. To meet strin­gent laser per­for­mance re­quired for ig­ni­tion, laser mod­el­ing codes in­clud­ing the Vir­tual Beam­line (VBL) and its pre­de­ces­sors are used as en­gines of the Laser Op­er­a­tions Per­for­mance Model (LPOM). VBL com­prises an ad­vanced non­lin­ear physics model that cap­tures the re­sponse of all the NIF laser com­po­nents (from IR to UV and nJ to MJ) and pre­cisely com­putes the input beam power pro­file needed to de­liver the de­sired UV out­put on tar­get. NIF was built to ac­cess the ex­treme high en­ergy den­sity con­di­tions needed to sup­port the na­tion’s nu­clear stock­pile and to study In­er­tial Con­fine­ment Fu­sion (ICF). The de­sign, op­er­a­tion and fu­ture en­hance­ments to this laser sys­tem are guided by the VBL physics mod­el­ing code which uses best-in-class stan­dards to en­able high-res­o­lu­tion sim­u­la­tions on the Lab­o­ra­tory’s high-per­for­mance com­put­ing plat­forms. The fu­ture of re­peated and op­ti­mized ig­ni­tion ex­per­i­ments re­lies on the abil­ity for the laser sys­tem to ac­cu­rately model and pro­duce de­sired power pro­files at an ex­panded regime from the laser’s orig­i­nal de­sign cri­te­ria.
LLNL Release Number: LLNL-ABS-847846
 
slides icon Slides FR2AO01 [3.580 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2AO01  
About • Received ※ 26 September 2023 — Revised ※ 12 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR2AO02 A Digital Twin for Neutron Instruments simulation, neutron, software, detector 1626
 
  • S. Nourbakhsh, Y. Le Goc, P. Mutti
    ILL, Grenoble, France
 
  Data from vir­tual ex­per­i­ments are be­com­ing an ex­tremely valu­able asset for re­search in­fra­struc­tures in a mul­ti­tude of as­pects and dif­fer­ent ac­tors: for in­stru­ment sci­en­tists to de­velop and op­ti­mise cur­rent and fu­ture in­stru­ments; for train­ing ex­ter­nal users in the usage of the in­stru­ment con­trol sys­tem; for sci­en­tists in study­ing, quan­ti­fy­ing and re­duc­ing in­stru­men­tal ef­fects on ac­quired data. Fur­ther­more large sets of sim­u­lated data are also a nec­es­sary in­gre­di­ent for the de­vel­op­ment of sur­ro­gate mod­els for faster and more ac­cu­rate sim­u­la­tion, re­duc­tion and analy­sis of the data. The de­vel­op­ment of a dig­i­tal twin of an in­stru­ment can an­swer such dif­fer­ent needs with a sin­gle uni­fied ap­proach wrap­ping in a user-friendly en­velop the knowl­edge about the in­stru­ment phys­i­cal de­scrip­tion, the spe­cific of the sim­u­la­tion pack­ages and their in­ter­ac­tion, and the high per­form­ing com­put­ing setup. In this ar­ti­cle we will pre­sent the gen­eral ar­chi­tec­ture of the dig­i­tal twin pro­to­type de­vel­oped at the ILL in the frame­work of the PANOSC Eu­ro­pean pro­ject in close col­lab­o­ra­tion with other re­search fa­cil­i­ties (ESS and Eu­XFel). The com­mu­ni­ca­tion pat­terns (based on ZQM) and in­ter­ac­tion be­tween the con­trol sys­tem (NOMAD), sim­u­la­tion soft­ware (Mc­Stas), in­stru­ment de­scrip­tion and con­fig­u­ra­tion, process man­age­ment (CAMEO) will be de­tailed. The adop­tion of FAIR prin­ci­ples for data for­mats and poli­cies in com­bi­na­tion with open-source soft­ware make it a sus­tain­able pro­ject both for de­vel­op­ment and main­te­nance in the mid and long-term.  
slides icon Slides FR2AO02 [1.245 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2AO02  
About • Received ※ 31 October 2023 — Revised ※ 02 November 2023 — Accepted ※ 05 December 2023 — Issued ※ 07 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR2BCO03 Taranta Project - Update and Current Status TANGO, controls, database, factory 1657
 
  • Y.L. Li, M. Eguiraun, J. Forsberg, V. Hardion, M. Leorato
    MAX IV Laboratory, Lund University, Lund, Sweden
  • V. Alberti
    INAF-OAT, Trieste, Italy
  • M. Canzari
    INAF - OAAB, Teramo, Italy
  • A. Dubey
    PSL, Pune, India
  • M. Gandor, D.T. Trojanowska
    S2Innovation, Kraków, Poland
  • H.R. Ribeiro
    Universidade do Porto, Faculdade de Ciências, Porto, Portugal
 
  Taranta, de­vel­oped jointly by MAX IV Lab­o­ra­tory and SKA Ob­ser­va­tory, is a web based no-code in­ter­face for re­mote con­trol of in­stru­ments at ac­cel­er­a­tors and other sci­en­tific fa­cil­i­ties. It has seen a great suc­cess in sys­tem de­vel­op­ment and sci­en­tific ex­per­i­ment usage. In the past two years, the panel of users has greatly ex­panded. The first gen­er­a­tion of Taranta was not able to han­dle the chal­lenges in­tro­duced by the user cases, no­tably the de­creased per­for­mance when a high num­ber of data points are re­quested, as well as new func­tion­al­ity re­quests. There­fore, a se­ries of refac­tor­ing and per­for­mance im­prove­ments of Taranta are on­go­ing, to pre­pare it for han­dling large data trans­mis­sion be­tween Taranta and mul­ti­ple sources of in­for­ma­tion, and to pro­vide more pos­si­bil­i­ties for users to de­velop their own dash­boards. This ar­ti­cle pre­sents the sta­tus of the Taranta pro­ject from the as­pects of wid­gets up­dates, pack­ages man­age­ment, op­ti­miza­tion of the com­mu­ni­ca­tion with the back­end Tan­goGQL, as well as the in­ves­ti­ga­tion on a new python li­brary com­pat­i­ble with the newest python ver­sion for Tan­goGQL. In ad­di­tion to the tech­ni­cal im­prove­ments, more fa­cil­i­ties other than MAX IV and SKAO are con­sid­er­ing to join Taranta pro­ject. One work­shop has been suc­cess­fully held and there will be more in the fu­ture. This ar­ti­cle also pre­sents the les­son learned from this pro­ject, the road map, and the GUI strat­egy for the near fu­ture.  
slides icon Slides FR2BCO03 [4.759 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2BCO03  
About • Received ※ 06 October 2023 — Accepted ※ 21 November 2023 — Issued ※ 23 November 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)