Keyword: experiment
Paper Title Other Keywords Page
MO2AO01 Facing the Challenges of Experiment Control and Data Management at ESRF-EBS data-acquisition, SRF, GUI, framework 66
 
  • J.M. Meyer, W. De Nolf, S. Debionne, S. Fisher, A. Götz, M. Guijarro, P. Guillou, A. Homs Puron, V. Valls
    ESRF, Grenoble, France
 
  In 2020 the new ESRF-EBS (Extremely Brilliant Source) took-up operation. With the much higher photon flux, experiments are faster and produce more data. To meet the challenges, a complete revision of data acquisition, management and analysis tools was undertaken. The result is a suite of advanced software tools, deployed today on more than 30 beamlines. The main packages are BLISS for experiment control and data acquisition, LIMA2 for high-speed detector control, EWOKS for data reduction and analysis workflows, and Daiquiri the web GUI framework. BLISS is programmed in Python, to allow easy sequence programming for scientists and easy integration of scientific software. BLISS offers: Configuration of hardware and experimental set-ups, a generic scanning engine for step-based and continuous data acquisition, live data display, frameworks to handle 1D and 2D detectors, spectrometers, monochromators, diffractometers (HKL) and regulation loops. For detectors producing very high data rates, data reduction at the source is important. LIMA2 allows parallel data processing to add the necessary computing power (CPU and GPU) for online data reduction in a flexible way. The EWOKS workflow system can use online or offline data to automate data reduction or analysis. Workflows can run locally or on a compute cluster, using CPUs or GPUs. Results are saved or fed back to the control system for display or to adapt the next data acquisition.  
slides icon Slides MO2AO01 [2.766 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO01  
About • Received ※ 03 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO02 A Beamline and Experiment Control System for the SLS 2.0 controls, interface, data-acquisition, EPICS 71
 
  • K. Wakonig, C. Appel, A. Ashton, S. Augustin, M. Holler, I. Usov, J. Wyzula, X. Yao
    PSI, Villigen PSI, Switzerland
 
  The beamlines of the Swiss Light Source (SLS) predominantly rely on EPICS standards as their control interface but in contrast to many other facilities, there is up to now no standardized user interfacing component to orchestrate, monitor and provide feedback on the data acquisition. As a result, the beamlines have either adapted community solutions or developed their own high-level orchestration system. For the upgrade project SLS 2.0, a sub-project was initiated to facilitate a unified beamline and experiment control system. During a pilot phase and a first development cycle, libraries of the Bluesky project were used, combined with additional in-house developed services, and embedded in a service-based approach with a message broker and in-memory database. Leveraging the community solutions paired with industry standards, enabled the development of a highly modular system which provides the flexibility needed for a constantly changing scientific environment. One year after the development started, the system was already tested during many weeks of user operation and recently received the official approval by the involved divisions to be rolled out as part of the SLS 2.0 upgrade.  
slides icon Slides MO2AO02 [3.119 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO02  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO03 The Solid Sample Scanning Workflow at the European XFEL target, FEL, database, controls 78
 
  • A. García-Tabarés Valdivieso, C. Deiter, L. Gelisio, S. Göde, S. Hauf, A.K. Kardoost, I. Karpics, J. Schulz, F. Sohn
    EuXFEL, Schelefeld, Germany
 
  The fast solid sample scanner (FSSS) used at the HED instrument of the European XFEL (EuXFEL) enables data collection from multiple samples mounted into standardized frames which can be exchanged via a transfer system without breaking the interaction chamber vacuum. In order to maximize the effective target shot repetition rate, it is a key requirement to use sample holders containing pre-aligned targets measured on an accurate level of a few micrometers. This contribution describes the automated sample delivery workflow for performing solid sample scanning using the FSSS. This workflow covers the entire process, from automatically identifying target positions within the sample, using machine learning algorithms, to set the parameters needed to perform the scans. The integration of this solution into the EuXFEL control system, Karabo, not only allows to control and perform the scans with the existing scan tool but also provides tools for image annotation and data acquisition. The solution thus enables the storage of data and metadata for future correlation across a variety of beamline parameters set during the experiment.  
slides icon Slides MO2AO03 [12.892 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO03  
About • Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO04 Experimental Data Taking and Management: The Upgrade Process at BESSY II and HZB controls, EPICS, data-acquisition, MMI 84
 
  • R. Müller, H. Görzig, G. Hartmann, K. Kiefer, R. Ovsyannikov, W. Smith, S. Vadilonga, J. Viefhaus
    HZB, Berlin, Germany
  • D.B. Allan
    BNL, Upton, New York, USA
 
  The endeavor of modernizing science data acquisition at BESSY II started 2019 [*] Significant achievements have been made: the Bluesky software ecosystem is now accepted framework for data acquisition, flow control and automation. It is operational at an increasing number of HZB beamlines, endstations and instruments. Participation in the global Bluesky collaboration is an extremely empowering experience. Promoting FAIR data principles at all levels developed a unifying momentum, providing guidance at less obvious design considerations. Now a joint demonstrator project of DESY, HZB, HZDR and KIT, named ROCK-IT (Remote Operando Controlled Knowledge-driven, IT-based), aims at portable solutions for fully automated measurements in the catalysis area of material science and is spearheading common developments. Foundation there is laid by Bluesky data acquisition, AI/ML support and analysis, modular sample environment, robotics and FAIR data handling. This paper puts present HZB controls projects as well as detailed HZB contributions to this conference [**] into context. It outlines strategies providing appropriate digital tools at a successor 4th generation light source BESSY III.
[*] R. Müller, et.al. https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL02
[**] covering digital twins, Bluesky, sample environment, motion control, remote access, meta data
 
slides icon Slides MO2AO04 [2.522 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO04  
About • Received ※ 05 October 2023 — Revised ※ 26 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO06 Neutron From a Distance: Remote Access to Experiments GUI, controls, network, software 95
 
  • P. Mutti, F. Cecillon, C. Cocho, A. Elaazzouzi, Y. Le Goc, J. Locatelli, H. Ortiz
    ILL, Grenoble, France
 
  Large-scale experimental facilities such as the ILL are designed to accommodate thousands of international visitors each year. Despite the annual influx of visitors, there has always been interest in options that don’t require users to travel to ILL. Remote access to instruments and datasets would unlock scientific opportunities for those less able to travel and contribute to global challenges like pandemics and global warming. Remote access systems can also increase the efficiency of experiments. For measurements that last a long time scientists can check regularly on the progress of the data taking from a distance, adjusting the instrument remotely if needed. Based on the VISA platform, the remote access becomes a cloud-based application which requires only a web browser and an internet connection. NOMAD Remote provides the same experience for users at home as though they were carrying out their experiment at the facility. VISA makes it easy for the experimental team to collaborate by allowing users and instrument scientists to share the same environment in real time. NOMAD Remote, an extension of the ILL instrument control software, enables researchers to take control of all instruments with continued hands-on support from local experts. Developed in-house, NOMAD Remote is a ground-breaking advance in remote access to neutron techniques. It allows full control of the extensive range of experimental environments with the highest security standards for data, and access to the instrument is carefully prioritised and authenticated.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO06  
About • Received ※ 31 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO07 Dynamical Modelling Validation and Control Development for the New High-Dynamic Double-Crystal Monochromator (HD-DCM-Lite) for Sirius/LNLS controls, FPGA, MMI, HOM 100
 
  • T.R. Silva Soares, J.P.S. Furtado, R.R. Geraldes, M. Saveri Silva, G.S. de Albuquerque
    LNLS, Campinas, Brazil
 
  Two new High-Dynamic Double-Crystal Monochromators (HD-DCM-Lite) are under installation in Sirius/LNLS for the new beamlines QUATI (quick-EXAFS) and SAPUCAIA (SAXS), which requires high in-position stability (5 nrad RMS in terms of pitch) whereas QUATI’s DCM demands the ability to perform quick sinusoidal scans in frequencies, for example 15 Hz at 4 mrad peak-to-peak amplitude. Therefore, this equipment aims to figure as an unparalleled bridge between slow step-scan DCMs, and channel-cut quick-EXAFS monochromators. In the previous conference, the dynamical modelling of HD-DCM-Lite was presented, indicating the expected performance to achieve QUATI and SAPUCAIA requirements. In this work, we are going to present the offline validation of the dynamical modelling, comparing to the solutions achieved for the previous version of LNLS HD-DCMs. This work also presents the hardware-based control architecture development, discussing the loop shaping technique and upgrades in the system, such as the increase of the position resolution, synchronization of the rotary stages, and FPGA code optimization. Furthermore, we describe how the motion controller was developed, given the high-performance motion control, such as complex control algorithm in parallel with a minimal jitter and the expectations for the beamlines commissioning regarding detector and undulator synchronization.  
slides icon Slides MO2AO07 [2.432 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO07  
About • Received ※ 06 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 12 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3AO04 Modelling and Control of a MeerKAT Antenna controls, target, site, factory 131
 
  • I.A. Dodia
    SARAO, Cape Town, South Africa
 
  This paper presents a comprehensive approach to modeling for control system design for a MeerKAT antenna. It focuses on dynamic modeling using time and frequency domain techniques, and lays the foundation for the design of a control system to meet the telescope’s stringent pointing and tracking requirements. The paper scope includes rigid body modelling of the antenna, system identification to obtain model parameters, and building a system model in Simulink. The Simulink model allows us to compare model performance with the measured antenna pointing, under various environmental conditions. The paper also integrates models for pointing disturbances, such as wind and friction. The integrated model is compared to the existing control setup. Wind disturbance plays a significant role in the pointing performance of the antenna, therefore the focus is placed on developing an appropriate wind model. This research will conclude by providing a well-documented, systematic control system design that is owned by SARAO and can be implemented to improve the pointing performance of the telescope.  
slides icon Slides MO3AO04 [6.441 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO04  
About • Received ※ 06 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 18 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3BCO06 Web Technology Enabling Fast and Easy Implementation of Large Experimental Facility Control System controls, EPICS, framework, interface 171
 
  • W. Zheng, H.B. Ma, L.Y. Wang, X.H. Xie, W.J. Ye, M. Zhang, P.L. Zhang
    HUST, Hubei, People’s Republic of China
 
  Funding: This work is supported by the National Magnetic Confinement Fusion Science Program (No. 2017YFE0301803) and by the National Natural Science Foundation of China (No.51821005).
Large experimental facilities are essential for pushing the frontier of fundamental research. The control system is the key for smooth operation for Large experimental facilities. Recently many new types of facilities have emerged, especially in fusion community, new machines with completely different designs are being built. They are not as mature as accelerators. They need flexible control systems to accommodate frequent changes in hardware and experiment workflow. The ability to quickly integrate new device and sub-systems into the control system as well as to easily adopt new operation modes are important requirements for the control system. Here we present a control system framework that is built with standard web technology. The key is using HTTP RESTful web API as the fundamental protocol for maximum interoperability. This enables it to be integrated into the already well developed ecosystem of web technology. Many existing tools can be integrated with no or little development. for instance, InfluxDB can be used as the archiver, Node-RED can be used as the Scripter and Docker can be used for quick deployment. It has also made integration of in house developed embedded devices much easier. In this paper we will present the capability of this control system framework, as well as a control system for field-reversed configuration fusion experiment facility implemented with it.
 
slides icon Slides MO3BCO06 [5.831 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3BCO06  
About • Received ※ 04 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3BCO07 Fast Beam Delivery for Flash Irradiations at the HZB Cyclotron radiation, controls, proton, cyclotron 178
 
  • J. Bundesmann, A. Denker, G. Kourkafas
    HZB, Berlin, Germany
  • J. Heufelder, A. Weber
    Charite, Berlin, Germany
  • P. Mühldorfer
    BHT, Berlin, Germany
 
  In the context of radiotherapy, Flash irradiations mean the delivery of high dose rates of more than 40 Gy/s, in a short time of less than one second. The expectation of the radio-oncologists are lesser side effects while maintaining the tumour control when using Flash. Clinically acceptable deviations of the applied dose to the described dose are less than 3%. Our accelerator control system is well suited for the standard treatment of ocular melanomas with irradiaton times of 30 s to 60 s. However, it is too slow for the short times required in Flash. Thus, a dedicated beam delivery control system has been developed, permitting irradiation times down to 7 ms with a maximal dose variation of less than 3%.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3BCO07  
About • Received ※ 24 August 2023 — Revised ※ 07 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2AO01 The Hybrid Identity of a Control System Organization: Balancing Support, Product, and R&D Expectations controls, software, framework, operation 303
 
  • S. Baymani
    PSI, Villigen PSI, Switzerland
 
  Controls organizations are often expected to fulfill a dual role as both a support organization and an R&D organization, providing advanced and innovative services. This creates a tension between the need to provide services and the desire and necessity to develop cutting-edge technology. In addition, Controls organizations must balance the competing demands of product development, maintenance and operations, and innovation and R&D. These conflicting expectations can lead to neglect of long-term strategic issues and create imbalances within the organization, such as technical debt and lack of innovation. This paper will explore the challenges of navigating these conflicting expectations and the common traps, risks, and consequences of imbalances. Drawing on our experience at PSI, we will discuss specific examples of conflicts and their consequences. We will also propose solutions to overcome or improve these conflicts and identify a long-term, sustainable approach for a hybrid organization such as Controls . Our proposals will cover strategies for balancing support and product development, improving communication, and enabling a culture of innovation. Our goal is to spark a broader discussion around the identity and role of control system organizations within large laboratory organizations, and to provide concrete proposals for organizations looking to balance competing demands and build a sustainable approach to control systems and services.  
slides icon Slides TU2AO01 [2.129 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU2AO01  
About • Received ※ 05 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 18 November 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2AO05 Maintenance of the National Ignition Facility Controls Hardware System controls, operation, target, laser 328
 
  • J.L. Vaher, G.K. Brunton, J. Dixon
    LLNL, Livermore, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
At the National Ignition Facility (NIF), achieving fusion ignition for the first time ever in a laboratory required one of the most complex hardware control systems in the world. With approximately 1,200 control racks, 66,000 control points, and 100, 000 cables, maintaining the NIF control system requires an exquisite choreography around experimental operations while adhering to NIF’s safety, security, quality, and efficiency requirements. To ensure systems operate at peak performance and remain available at all times to avoid costly delays, preventative maintenance activities are performed two days per week as the foundation of our effective maintenance strategy. Reactive maintenance addresses critical path issues that impact experimental operations through a rapid response 24x7 on-call support team. Prioritized work requests are reviewed and approved daily by the facility operations scheduling team. NIF is now in the second decade of operations, and the aging of many control systems is threatening to affect performance and availability, potentially impacting planned progress of the fusion ignition program. The team is embarking on a large-scale refurbishment of systems to mitigate this threat. Our robust maintenance program will ensure NIF can capitalize on ignition and push the facility to even greater achievements. This paper will describe the processes, procedures, and metrics used to plan, coordinate, and perform controls hardware maintenance at NIF.
LLNL Release Number: LLNL-ABS-848420
 
slides icon Slides TU2AO05 [1.938 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU2AO05  
About • Received ※ 03 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO02 EPICS Java Developments EPICS, controls, software, framework 342
 
  • KS. Saintin, P. Lotrus
    CEA-IRFU, Gif-sur-Yvette, France
  • L. Caouën
    CEA-DRF-IRFU, France
 
  The IRFU*/DIS software control team is involved from feasibility studies to the deployment of equipment covering low level (hardware, PLC) to high level (GUI supervision). For our experiments, we are using two mains frameworks: - MUSCADE, a full Java in-house solution embedded SCADA dedicated to small and compact experiments controlled by PLC (Programmable Logic Controller), only compatible with Windows Operating System (OS) for the server side. - EPICS**, a distributed control systems to operate devices such as particle accelerators, large facilities and major telescopes, mostly deployed on Linux OS environments. EPICS frameworks provides several languages for bindings and server interfaces such as C/C++, Python and Java. However, most of the servers also called IOC*** developed in the community are based on C/C++ and Linux OS System. EPICS also provides extensions developed in Java such as the EPICS Archiver Appliance, Phoebus Control-Studio**** (GUI), and Display Web Runtime (Web Client). All these tools depend on CAJ (a pure Java implementation Channel Access Library). Today, MUSCADE users use to work under Windows, and they need intuitive tools that provide the same features than MUSCADE. Thus, research and development activities mainly focus on EPICS solution adaptation. It aims to explore further CAJ library, especially on the server side aspect. In order to achieve this goal, several developments have been carried out since 2018.
* IRFU https://irfu.cea.fr/en
** EPICS https://epics-controls.org/
*** IOC Input Output Controller
**** Phoebus Control-Studio https://control-system-studio.readthedocs.io/
 
slides icon Slides TUMBCMO02 [1.381 MB]  
poster icon Poster TUMBCMO02 [2.202 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO02  
About • Received ※ 30 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 30 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO04 Real-Time Visualization and Peak Fitting of Time-of-Flight Neutron Diffraction at VULCAN lattice, neutron, detector, EPICS 346
 
  • B.A. Sobhani, Y. Chen
    ORNL, Oak Ridge, Tennessee, USA
 
  In neutron scattering experiments at the VULCAN beamline at SNS, Gaussian fitting of dspace peaks can be used to summarize certain material properties of a sample. If this can be done in real time, it can also assist scientists in mid-experiment decision making. This paper describes a system developed in EPICS for visualizing dspace evolution and fitting dspace peaks in real-time at the VULCAN beamline.  
slides icon Slides TUMBCMO04 [0.433 MB]  
poster icon Poster TUMBCMO04 [0.338 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO04  
About • Received ※ 05 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO08 Extending Phoebus Data Browser to Alternative Data Sources EPICS, database, controls, interface 355
 
  • M. Romanovschi, I.D. Finch, G.D. Howells
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Phoebus user interface to EPICS is an integral part of the new control system for the ISIS Neutron and Muon Source accelerators and targets. Phoebus can use the EPICS Archiver Appliance, which has been deployed as part of the transition to EPICS, to display the history of PVs. However, ISIS data has and continues to be stored in the InfluxDB time series database. To enable access to this data, a Python application to interface between Phoebus and other databases has been developed. Our implementation utilises Quart, an asynchronous web framework, to allow multiple simultaneous data requests. Google Protocol Buffer, natively supported by Phoebus, is used for communication between Phoebus and the database. By employing subclassing, our system can in principle adapt to different databases, allowing flexibility and extensibility. Our open-source approach enhances Phoebus’s capabilities, enabling the community to integrate it within a wider range of applications.  
slides icon Slides TUMBCMO08 [0.799 MB]  
poster icon Poster TUMBCMO08 [0.431 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO08  
About • Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 21 November 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO13 Applications of Artificial Intelligence in Laser Accelerator Control System laser, target, controls, simulation 372
 
  • F.N. Li, K.C. Chen, Z. Guo, Q.Y. He, C. Lin, Q. Wang, Y. Xia, M.X. Zang
    PKU, Beijing, People’s Republic of China
 
  Funding: the National Natural Science Foundation of China (Grants No. 11975037, NO. 61631001 and No. 11921006), and the National Grand Instrument Project (No. 2019YFF01014400 and No. 2019YFF01014404).
Ultra-intense laser-plasma interactions can produce TV/m acceleration gradients, making them promising for compact accelerators. Peking University is constructing a proton radiotherapy system prototype based on PW laser accelerators, but transient processes challenge stability control, critical for medical applications. This work demonstrates artificial intelligence’s (AI) application in laser accelerator control systems. To achieve micro-precision alignment between the ultra-intense laser and target, we propose an automated positioning program using the YOLO algorithm. This real-time method employs a convolutional neural network, directly predicting object locations and class probabilities from input images. It enables precise, automatic solid target alignment in about a hundred milliseconds, reducing experimental preparation time. The YOLO algorithm is also integrated into the safety interlocking system for anti-tailing, allowing quick emergency response. The intelligent control system also enables convenient, accurate beam tuning. We developed high-performance virtual accelerator software using "OpenXAL" and GPU-accelerated multi-particle beam transport simulations. The software allows real-time or custom parameter simulations and features control interfaces compatible with optimization algorithms. By designing tailored objective functions, desired beam size and distribution can be achieved in a few iterations.
 
slides icon Slides TUMBCMO13 [1.162 MB]  
poster icon Poster TUMBCMO13 [1.011 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO13  
About • Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 23 November 2023 — Issued ※ 23 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO19 MAX IV Laboratory’s Control System Evolution and Future Strategies controls, operation, detector, TANGO 395
 
  • V. Hardion, P.J. Bell, T. Eriksson, M. Lindberg, P. Sjöblom, D.P. Spruce
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV Laboratory, a 4th generation synchrotron radiation facility located in southern Sweden, has been operational since 2016. With multiple beamlines and experimental stations completed and in steady use, the facility is now approaching the third phase of development, which includes the final two of the 16 planned beamlines in user operation. The focus is on achieving operational excellence by optimizing reliability and performance. Meanwhile, the strategy for the coming years is driven by the need to accommodate a growing user base, exploring the possibility of operating a Soft X-ray Laser (SXL), and achieving the diffraction limit for 10 keV of the 3 GeV. The Technical Division is responsible for the control and computing systems of the entire laboratory. This new organization provides a coherent strategy and a clear vision, with the ultimate goal of enabling science. The increasing demand for more precise and efficient control systems has led to significant developments and maintenance efforts. Pushing the limits in remote access, data generation, time-resolved and fly-scan experiments, and beam stability requires the proper alignment of technology in IT infrastructure, electronics, software, data analysis, and management. This article discusses the motivation behind the updates, emphasizing the expansion of the control system’s capabilities and reliability. Lastly, the technological strategy will be presented to keep pace with the rapidly evolving technology landscape, ensuring that MAX IV is prepared for its next major upgrade.  
slides icon Slides TUMBCMO19 [8.636 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO19  
About • Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 24 November 2023 — Issued ※ 29 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO21 SOLEIL II: Towards A Major Transformation of the Facility controls, operation, synchrotron, MMI 404
 
  • Y.-M. Abiven, S.-E. Berrier, A. Buteau, I. Chado, E. Fonda, E. Frahi, B. Gagey, L.S. Nadolski, P. Pierrot
    SOLEIL, Gif-sur-Yvette, France
 
  Operational since 2008, SOLEIL [1] is providing users with access to a wide range of experimental techniques thanks to its 29 beamlines, covering a broad energy range from THz to hard X-ray. In response to new scientific and societal challenges, SOLEIL is undergoing a major transformation with the ongoing SOLEIL II project. This project includes designing an ambitious Diffraction Limited Storage Ring (DLSR) [2] to increase performances in terms of brilliance, coherence, and flux, upgrading the beamlines to provide advanced methods, and driving a digital transformation in data- and user- oriented approaches. This paper presents the project organization and technical details studies for the ongoing upgrades, with a focus on the digital transformation required to address future scientific challenges. It will depict the computing and data management program with the presentation of the targeted IT architecture to improve automated and data-driven processes for optimizing instrumentation. The optimization program covers the facility reconstruction period as well as future operation, including the use of Artificial Intelligence (AI) techniques for data production management, decision-making, complex feedbacks, and data processing. Real-time processes are to be applied in the acquisition scanning design, where detectors and robotic systems will be coupled to optimize beam time.  
slides icon Slides TUMBCMO21 [0.663 MB]  
poster icon Poster TUMBCMO21 [1.908 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO21  
About • Received ※ 04 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO23 Development and New Perspectives on the LMJ Power Conditioning Modules laser, software, controls, MMI 415
 
  • P. Torrent, J-P. Airiau, I. Issury
    CEA, LE BARP cedex, France
 
  The Laser MegaJoule (LMJ), a 176-beam laser French facility, located at the CEA* CESTA close to Bordeaux is part of the French Simulation Program, for improvement of theoretical models, high performance numerical simulations and experimental validations. It is designed to deliver about 1.4 MJ of energy on targets, for plasma and fusion experiments. With 15 bundles operational at the end of 2023, the operational capabilities are increasing gradually until the full completion of the LMJ facility by 2025. With the increasing of the Power Conditioning Modules (PCM), it has been observed more and more instabilities in the synchronization and the repeatability of the PCM’s triggering. For experiments based on 10 or more bundles, it has resulted in the issue of coupling the LMJ bundles with the PETAL laser and in the safety shutdown of the PCM due to the timeout of capacitors under high voltage. In this paper, a description of the LMJ PCM is first given. Then, the considered problem is presented with a detailed analysis and the software solution is finally presented with experimental results showing the gain in the reliability and effectiveness of the PCM during the LMJ-PETAL shots.
* CEA : Commissariat à l Energie Atomique et aux Energies Alternatives
 
slides icon Slides TUMBCMO23 [2.897 MB]  
poster icon Poster TUMBCMO23 [0.941 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO23  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO31 Use of EPICS in Small Laboratories controls, EPICS, software, interface 437
 
  • H. Junkes
    FHI, Berlin, Germany
 
  For some time now, we* have also been using the EPICS** control system in small laboratories in order to be able to guarantee data recording and processing in accordance with the FAIR*** guidelines and thus to increase the overall quality of the data. It was necessary to overcome many reservations and, above all, to counter the prejudice that such systems are only suitable for large-scale installations. We are now trying to communicate the idea behind this kind of data acquisition (distributed systems, open protocols, open file formats, etc.) also in the studies of physicists, chemists and engineers and are extending our activities to universities. We also hope that in the future, users who use the individual user facilities will be able to make optimal use of the options available there. In our talk we will present the use of EPICS in small laboratories.
* https://epics.mpg.de
** https://epics-controls.org
*** https://www.fair-di.eu/fairmat/about-fairmat/consortium-fairmat
 
slides icon Slides TUMBCMO31 [0.788 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO31  
About • Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 06 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP004 System Identification via ARX Model and Control Design for a Granite Bench at Sirius/LNLS controls, simulation, feedback, acceleration 479
 
  • J.P.S. Furtado, I.E. Santos, T.R. Silva Soares
    LNLS, Campinas, Brazil
 
  Modern 4th generation synchrotron facilities demand mechanical systems and hardware capable of fine position control, improving the performance of experiments at the beamlines. In this context, granite benches are widely used to position systems such as optical elements and magnetos, due to its capacity of insulating interferences from the ground. This work aims to identify the transfer function that describes the motion of the granite bench at the EMA Beamline (Extreme conditions Methods of Analysis) and then design the control gains to reach an acceptable motion performance in the simulation environment before embedding the configuration into the real system, followed by the validation at the beamline. This improvement avoids undesired behaviour in the hardware or in the mechanism when designing the controller. The bench, weighting 1.2 tons, is responsible by carrying a coil, weighting 1.8 tons, which objective is to apply a 3 T magnetic field to the sample that receives the beam provided by the electrons accelerator. The system identification method applied in this paper is based on the auto-regressive model with exogenous inputs (ARX). The standard servo control loop of the Omron Delta Tau Power Brick controller and the identified plant were simulated in Simulink in order find the control parameters. This paper shows the results and comparison of the simulations and the final validation of the hardware performance over the real system.  
poster icon Poster TUPDP004 [0.720 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP004  
About • Received ※ 06 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 17 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP006 System Identification Embedded in a Hardware-Based Control System with CompactRIO controls, FPGA, HOM, real-time 489
 
  • T.R. Silva Soares, J.L. Brito Neto, J.P.S. Furtado, R.R. Geraldes
    LNLS, Campinas, Brazil
 
  The development of innovative model-based design high bandwidth mechatronic systems with stringent performance specifications has become ubiquitous at LNLS-Sirius beamlines. To achieve such unprecedent specifications, closed loop control architecture must be implemented in a fast, flexible and reliable platform such as NI CompactRIO (cRIO) controller that combines FPGA and real-time capabilities. The design phase and life-cycle management of such mechatronics systems heavily depends on high quality experimental data either to enable rapid prototyping, or even to implement continuous improvement process during operation. This work aims to present and compare different techniques to stimulus signal generation approaching Schroeder phasing and Tukey windowing for better crest factor, signal-to-noise ratio, minimum mechatronic stress, and plant identification. Also show the LabVIEW implementation to enable embeddeding this framework that requires specific signal synchronization and processing on the main application containing a hardware-based control architecture, increasing system diagnostic and maintenance ability. Finally, experimental results from the High-Dynamic Double-Crystal Monochromator (HD-DCM-Lite) of QUATI (quick absorption spectroscopy) and SAPUCAIA (small-angle scattering) beamlines and from the High-Dynamic Cryogenic Sample Stage from SAPOTI (multi-analytical X-ray technique) of CARNAÚBA beamline are also presented in this paper.  
poster icon Poster TUPDP006 [0.766 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP006  
About • Received ※ 06 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP010 The Laser Megajoule Facility Status Report laser, target, diagnostics, controls 498
 
  • I. Issury, J-P. Airiau, Y. Tranquille-Marques
    CEA, LE BARP cedex, France
 
  The Laser MegaJoule, a 176-beam laser facility developed by CEA, is located near Bordeaux. It is part of the French Simulation Program, which combines improvement of theoretical models used in various domains of physics and high performance numerical simulation. It is designed to deliver about 1.4 MJ of energy on targets, for high energy density physics experiments, including fusion experiments. The LMJ technological choices were validated on the LIL, a scale-1 prototype composed of 1 bundle of 4-beams. The first bundle of 8-beams was commissioned in October 2014 with the realisation of the first experiment on the LMJ facility. The operational capabilities are increasing gradually every year until the full completion by 2025. By the end of 2023, 18 bundles of 8-beams will be assembled and 15 bundles are expected to be fully operational. In this paper, a presentation of the LMJ Control System architecture is given. A description of the integration platform and simulation tools, located outside the LMJ facility, is given. Finally, a review of the LMJ status report is detailed with an update on the LMJ and PETAL activities.
LMJ: Laser MegaJoule
CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives
LIL : Ligne d’Intégration Laser
 
poster icon Poster TUPDP010 [1.200 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP010  
About • Received ※ 28 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 08 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP014 Bluesky Web Client at Bessy II controls, status, interface, real-time 518
 
  • H.L. He, G. Preuß, S.S. Sachse, W. Smith
    HZB, Berlin, Germany
  • R. Ovsyannikov
    BESSY GmbH, Berlin, Germany
 
  Funding: Helmholtz-Zentrum Berlin
Considering the existing Bluesky control framework at BESSY II, a web client with React based on Bluesky HTTP Server is being developed. We hope to achieve a cross-platform and cross-device system to realize remote control and monitoring of experiments. The current functions of the system are monitoring of the Bluesky Queue Server status, control over a Bluesky Run Engine environment, browsing of Queue Server history and editing and running of Bluesky plans. Challenges around the presentation of live data are explored. This work builds on that of NSLS II who created a React based web interface and implements a tool for BESSY II.
 
poster icon Poster TUPDP014 [0.311 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP014  
About • Received ※ 29 September 2023 — Accepted ※ 01 December 2023 — Issued ※ 11 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP015 Test Bench for Motor and Motion Controller Characterization controls, EPICS, GUI, data-acquisition 522
 
  • D.K. Kraft, M. Brendike
    HZB, Berlin, Germany
 
  To maximize beamtime usage motorization of beamline equipment is crucial. Choosing the correct motor is complex, since performance depends largely on the combination of motor and motion controller [1]. This challenge, alongside renewing the twenty years old infrastructure at BESSY II, led to the demand for a motor testbench. The testbench was designed to be modular, so it fits different motors, loads and sensors. It allows independent performance verification and enables us to find a fitting combination of motor and motion controller. The testbench is operated via EPICS and Bluesky, allowing us usage of python for automated data acquisition and testing. An overview of the mechanical and electrical setup, as well as some data from different performance tests will be presented.
[1]A.Hughes , B.Drury, ’Electric Motors and Drivers: Fundamentals, Types and Applications’, Fifth Edition, Kidlington, United Kingdom, 2019, pp. 41-86.
 
poster icon Poster TUPDP015 [1.295 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP015  
About • Received ※ 06 October 2023 — Revised ※ 13 October 2023 — Accepted ※ 02 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP019 Operation of the ESR Storage Ring with the LSA Control System accumulation, operation, storage-ring, injection 534
 
  • S.A. Litvinov, R. Hess, B. Lorentz, M. Steck
    GSI, Darmstadt, Germany
 
  The LHC Software Architecture (LSA) has been applied to the accelerator complex GSI, Germany as a new control system. The Experimental Storage Ring (ESR) was recommissioned with the LSA and different accelerator and physics experiments were performed in the last several years. The overview of the ESR performance will be presented here. The features and challenges of the operation with LSA system will be outlined as well.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP019  
About • Received ※ 06 October 2023 — Revised ※ 29 November 2023 — Accepted ※ 20 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP043 Final Design of Control and Data Acquisition System for the ITER Heating Neutral Beam Injector Test Bed controls, data-acquisition, network, power-supply 612
 
  • L. Trevisan, A.F. Luchetta, G. Manduchi, G. Martini, A. Rigoni, C. Taliercio
    Consorzio RFX, Padova, Italy
  • N. Cruz
    IPFN, Lisbon, Portugal
  • C. Labate, F. Paolucci
    F4E, Barcelona, Spain
 
  Funding: This work has been carried out within the framework of the EUROfusion Consortium funded by the European Union via Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion)
Tokamaks use heating neutral beam (HNB) injectors to reach fusion conditions and drive the plasma current. ITER, the large international tokamak, will have three high-energy, high-power (1MeV, 16.5MW) HNBs. MITICA, the ITER HNB prototype, is being built at the ITER Neutral Beam Test Facility, Italy, to develop and test the ITER HNB, whose requirements are far beyond the current HNB technology. MITICA operates in a pulsed way with pulse duration up to 3600s and 25% duty cycle. It requires a complex control and data acquisition system (CODAS) to provide supervisory and plant control, monitoring, fast real-time control, data acquisition and archiving, data access, and operator interface. The control infrastructure consists of two parts: central and plant system CODAS. The former provides high-level resources such as servers and a central archive for experimental data. The latter manages the MITICA plant units, i.e., components that generally execute a specific function, such as power supply, vacuum pumping, or scientific parameter measurements. CODAS integrates various technologies to implement the required functions and meet the associated requirements. Our paper presents the CODAS requirement and architecture based on the experience gained with SPIDER, the ITER full-size beam source in operation since 2018. It focuses on the most challenging topics, such as synchronization, fast real-time control, software development for long-lasting experiments, system commissioning, and integration.
 
poster icon Poster TUPDP043 [0.621 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP043  
About • Received ※ 05 October 2023 — Accepted ※ 10 December 2023 — Issued ※ 19 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP046 Beam Operation for Particle Physics and Photon Science with Pulse-to-Pulse Modulation at KEK Injector Linac injection, operation, linac, controls 627
 
  • K. Furukawa, M. Satoh
    KEK, Ibaraki, Japan
 
  The electron and positron accelerator complex at KEK offers unique experimental opportunities in the fields of elementary particle physics with SuperKEKB collider and photon science with two light sources. In order to maximize the experimental performances at those facilities the injector LINAC employs pulse-to-pulse modulation at 50 Hz, injecting beams with diverse properties. The event-based control system effectively manages different beam configurations. This injection scheme was initially designed 15 years ago and has been in full operation since 2019. Over the years, quite a few enhancements have been implemented. As the event-based controls are tightly coupled with microwave systems, machine protection systems and so on, their modifications require meticulous planning. However, the diverse requirements from particle physics and photon science, stemming from the distinct nature of those experiments, often necessitate patient negotiation to meet the demands of both fields. This presentation discusses those operational aspects of the multidisciplinary facility.  
poster icon Poster TUPDP046 [2.498 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP046  
About • Received ※ 19 November 2023 — Accepted ※ 10 December 2023 — Issued ※ 11 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP050 Development and Test Operation of the Prototype of the New Beam Interlock System for Machine Protection of the RIKEN RI Beam Factory controls, EPICS, operation, FPGA 645
 
  • M. Komiyama, M. Fujimaki, N. Fukunishi, A. Uchiyama
    RIKEN Nishina Center, Wako, Japan
  • M. Hamanaka, K. Kaneko, R. Koyama, M. Nishimura, H. Yamauchi
    SHI Accelerator Service Ltd., Tokyo, Japan
  • A. Kamoshida
    National Instruments Japan Corporation, MInato-ku, Tokyo, Japan
 
  We have been operating the beam interlock system (BIS) for machine protection of the RIKEN RI Beam Factory (RIBF) since 2006. It stops beams approximately 15 ms after receiving an alert signal from the accelerator and beam line components. We continue to operate BIS successfully; however, we are currently developing a successor system to stop a beam within 1 ms considering that the beam intensity of RIBF will continue to increase in the future. After comparing multiple systems, CompactRIO, a product by National Instruments, was selected for the successor system. Interlock logic for signal input/output is implemented on the field-programmable gate array (FPGA) because fast processing speed is required. On the other hand, signal condition setting and monitoring do not require the same speed as interlock logic. They are implemented on the RT-OS and controlled by using experimental physics and industrial control system (EPICS) by setting up an EPICS server on the RT-OS. As a first step in development, a prototype consisting of two stations that handle only digital alert signals was developed and installed in part of the RIBF in the summer of 2022 (224 input contacts). The signal response time of the prototype, measured with an oscilloscope, averaged 0.52 ms with both stations (the distance between two stations is approximately 75 m). Furthermore, by additionally installing a pull-up circuit at each signal input contact of the system, the system response time was successfully reduced to approximately 0.13 ms.  
poster icon Poster TUPDP050 [0.816 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP050  
About • Received ※ 03 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP052 The Progress and Status of HEPS Beamline Control System controls, EPICS, detector, synchrotron 650
 
  • G. Li, X.B. Deng, X.W. Dong, Z.H. Gao, G. Lei, Y. Liu, C.X. Yin, Z.Y. Yue, D.S. Zhang, Q. Zhang, Z. Zhao, A.Y. Zhou
    IHEP, Beijing, People’s Republic of China
  • N. Xie
    IMP/CAS, Lanzhou, People’s Republic of China
 
  HEPS will be the first high-energy (6GeV) synchrotron radiation light source in China which is mainly composed of an accelerator, beamlines and end-stations. In phase I, 14+1 beamlines and corresponding experimental stations will be constructed. The beamline control system design, based on EPICS, has been completed and will soon enter the stage of engineering construction and united commissioning. Here, the progress and status of the beamline control system are presented.  
poster icon Poster TUPDP052 [4.531 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP052  
About • Received ※ 01 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP065 Introduction to the Control System of the PAL-XFEL Beamlines FEL, controls, network, EPICS 655
 
  • G.S. Park, S-M. Hwang, M.Z. Jeong, W.U. Kang, C.Y. Lim
    PAL, Pohang, Republic of Korea
 
  The PAL-XFEL beamlines are composed of two different types of beamlines: a hard X-ray beamline and a soft X-ray beamline. The hard X-ray beamline generates free electron lasers with pulse energies ranging from 2-15 keV, pulse lengths of 10-35 fs, and arrival time errors of less than 20 fs from 4-11 GeV electron beams for X-ray Scattering & Spectroscopy (XSS) and Nano Crystallography & Coherent Imaging (NCI) experiments. On the other hand, the soft X-ray beamline generates free electron lasers with photon energies ranging from 0.25-1.25 keV, and with more than 1012 photons, along with 3 GeV electron beams for soft X-ray Scattering & Spectroscopy (SSS) experiments. To conduct experiments using the XFEL, precise beam alignment, diagnostics, and control of experimental devices are necessary. The devices of the three beamlines are composed of control systems based on the Experimental Physics and Industrial Control System (EPICS), which is a widely-used open-source software framework for distributed control systems. The beam diagnostic devices include QBPM (Quad Beam Position Monitor), photodiode, Pop-in monitor, and inline spectrometer, among others. Additionally, there are other systems such as CRL (Compound Refractive Lenses), KB mirror (Kirkpatrick-Baez mirror), attenuator, and vacuum that are used in the PAL-XFEL beamlines. We would like to introduce the control system, event timing, and network configuration for PAL-XFEL experiments.  
poster icon Poster TUPDP065 [1.116 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP065  
About • Received ※ 10 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP074 Managing Robotics and Digitization Risk GUI, software, controls, neutron 676
 
  • D. Marais, J.C. Mostert, R. Prinsloo
    NECSA, Hartbeespoort, South Africa
 
  Robotic and digitization risks refer to the potential negative consequences that can arise from the use of robots and digital technologies in various industries, which include experimental physics control systems. Risks include the compromising or malfunctioning of these systems, resulting in injury, equipment damage, loss of data or disruptions to critical infrastructure and services. Mitigating these risks involves taking proactive steps to reduce the likelihood of negative consequences and minimize their impact if they do occur. A comprehensive risk management approach that incorporates a combination of technical, organizational, and cultural strategies can help mitigate the potential risks through the implementation of the following strategies which will be discussed in this presentation: Regular maintenance and testing of robotic systems; Implementation of strong cyber security measures; Employee training and awareness programs; Adoption of industry standards and best practices; Developing contingency plans and backup systems; Establishing clear ethical and social guidelines.  
poster icon Poster TUPDP074 [2.568 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP074  
About • Received ※ 05 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP083 DAQ System Based on Tango, Sardana and PandABox for Millisecond Time Resolved Experiment at the CoSAXS Beamline of MAX IV Laboratory laser, controls, detector, TANGO 713
 
  • V. Da Silva, B.N. Ahn, J.P. Alcocer, R. Appio, A. Freitas, M. Lindberg, T.S. Plivelic, A.E. Terry
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  CoSAXS is the Coherent and Small Angle X-ray Scattering (SAXS) beamline placed at the diffraction-limited 3 GeV storage ring at MAX IV Laboratory. The beamline can deliver a very high photon flux ~1013 ph/s and it is equipped with state-of-the-art pixel detectors, suitable for experiments with a high time-resolution to be performed. In this work we present the upgraded beamline data acquisition strategy for a millisecond time-resolved SAXS/WAXS experiment, using laser light to induce temperature jumps or UV-excitation with the consequent structural changes on the system. In general terms, the beamline control system is based on TANGO and built on top of it, Sardana provides an advanced scan framework. In order to synchronize the laser light pulse on the sample, the X-ray fast shutter opening time and the X-ray detectors readout, hardware triggers are used. The implementation is done using PandABox, which generates the pulse train for the laser and for all active experimental channels, such as counters and detectors, in synchronization with the fast shutter opening time. PandABox integration is done with a Sardana Trigger Gate Controller, used to configure the pulses parameters as well to orchestrate the hardware triggers during a scan. This paper describes the experiment orchestration, laser light synchronization with multiple X-ray detector.  
poster icon Poster TUPDP083 [1.645 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP083  
About • Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP093 CERN Proton Irradiation Facility (IRRAD) Data Management, Control and Monitoring System Infrastructure for post-LS2 Experiments radiation, controls, proton, monitoring 762
 
  • B. Gkotse, G. Pezzullo, F. Ravotti
    CERN, Meyrin, Switzerland
  • P. Jouvelot
    MINES Paris, PSL, Paris, Cedex 06,, France
 
  Funding: European Union’s Horizon 2020 Research and Innovation programme under GA no 101004761 and Horizon Europe Research and Innovation programme under Grant Agreement No 101057511.
Since upgrades of the CERN Large Hadron Collider are planned and design studies for a post-LHC particle accelerator are ongoing, it is key to ensure that the detectors and electronic components used in the CERN experiments and accelerators can withstand the high amount of radiation produced during particle collisions. To comply with this requirement, scientists perform radiation testing experiments, which consist in exposing these components to high levels of particle radiation to simulate the real operational conditions. The CERN Proton Irradiation Facility (IRRAD) is a well-established reference facility for conducting such experiments. Over the years, the IRRAD facility has developed a dedicated software infrastructure to support the control and monitoring systems used to manage these experiments, as well as to handle other important aspects such as dosimetry, spectrometry, and material traceability. In this paper, new developments and upgrades to the IRRAD software infrastructure are presented. These advances are crucial to ensure that the facility remains up-to-date and able to cope with the increasing (and always more complex) user needs. These software upgrades (some of them carried out within the EU-funded project AIDAinnova and EURO-LABS) will help to improve the efficiency and accuracy of the experiments performed at IRRAD and enhance the capabilities of this facility.
 
poster icon Poster TUPDP093 [2.888 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP093  
About • Received ※ 05 October 2023 — Revised ※ 21 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 10 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP105 The SLS 2.0 Beamline Control System Upgrade Strategy controls, EPICS, MMI, network 807
 
  • T. Celcer, X. Yao, E. Zimoch
    PSI, Villigen PSI, Switzerland
 
  After more than 20 years of successful operation the SLS facility will undergo a major upgrade, replacing the entire storage ring, which will result in a significantly improved beam emittance and brightness. In order to make use of improved beam characteristics, beamline upgrades will also play a crucial part in the SLS 2.0 project. However, offering our users an optimal beamtime experience will strongly depend on our ability to leverage the beamline control and data acquisition tools to a new level. Therefore, it is necessary to upgrade and modernize the majority of our current control system stack. This article provides an overview of the planned beamline control system upgrade from the technical as well as project management perspective. A portfolio of selected technical solutions for the main control system building blocks will be discussed. Currently, the controls HW in SLS is based on the VME platform, running the VxWorks operating system. Digital/analog I/O, a variety of motion solutions, scalers, high voltage power supplies, and timing and event system are all provided using this platform. A sensible migration strategy is being developed for each individual system, along with the overall strategy to deliver a modern high-level experiment orchestration environment. The article also focuses on the challenges of the phased upgrade, coupled with the unavoidable coexistence with existing VME-based legacy systems due to time, budget, and resource constraints.  
poster icon Poster TUPDP105 [4.148 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP105  
About • Received ※ 04 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP110 Control System Design of the CHIMERA Fusion Test Facility controls, EPICS, PLC, SCADA 827
 
  • P.T. Smith, A. Greer, B.A. Roberts, P.B. Taylor
    OSL, St Ives, Cambridgeshire, United Kingdom
  • D.J.N. McCubbin, M. Roberts
    JCE, Warrington, United Kingdom
 
  Funding: Observatory Sciences Ltd
CHIMERA is an experimental nuclear fusion test facility which aims to simulate the intense magnetic fields and temperature gradients found within a tokamak fusion reactor. The control system at CHIMERA is based on EPICS and will have approximately 30 input/output controllers (IOCs) when it comes online in 2024. It will make heavy use of CSS Phoebus for its user interface, sequencer and alarm system. CHIMERA will use EPICS Archiver Appliance for data archiving and EPICS areaDetector to acquire high speed data which is stored in the HDF5 format. The control philosophy at CHIMERA emphasises PLC based control logic using mostly Siemens S7-1500 PLCs and using OPCUA to communicate with EPICS. EPICS AUTOSAVE is used both for manually setting lists of process variables (PVs) and for automatic restoration of PVs if an IOC must be restarted.
 
poster icon Poster TUPDP110 [1.711 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP110  
About • Received ※ 03 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 17 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP117 Classification and Prediction of Superconducting Magnet Quenches power-supply, superconducting-magnet, GUI, operation 856
 
  • J.A. Einstein-Curtis, J.P. Edelen, M.C. Kilpatrick, R. O’Rourke
    RadiaSoft LLC, Boulder, Colorado, USA
  • K.A. Drees, J.S. Laster, M. Valette
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0021699.
Robust and reliable quench detection for superconducting magnets is increasingly important as facilities push the boundaries of intensity and operational runtime. RadiaSoft has been working with Brookhaven National Lab on quench detection and prediction for superconducting magnets installed in the RHIC storage rings. This project has analyzed several years of power supply and beam position monitor data to train automated classification tools and automated quench precursor determination based on input sequences. Classification was performed using supervised multilayer perceptron and boosted decision tree architectures, while models of the expected operation of the ring were developed using a variety of autoencoder architectures. We have continued efforts to maximize area under the receiver operating characteristic curve for the multiple classification problem of real quench, fake quench, and no-quench events. We have also begun work on long short-term memory (LSTM) and other recurrent architectures for quench prediction. Examinations of future work utilizing more robust architectures, such as variational autoencoders and Siamese models, as well as methods necessary for uncertainty quantification will be discussed.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP117  
About • Received ※ 08 October 2023 — Revised ※ 22 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 07 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP120 How Embracing a Common Tech Stack Can Improve the Legacy Software Migration Experience software, database, framework, laser 860
 
  • C.D. Burgoyne, C.R. Albiston, R.G. Beeler, M. Fedorov, J.J. Mello, E.R. Pernice, M. Shor
    LLNL, Livermore, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Over the last several years, the National Ignition Facility (NIF), the world’s largest and most energetic laser, has regularly conducted approximately 400 shots per year. Each experiment is defined by up to 48 unique pulse shapes, with each pulse shape potentially having thousands of configurable data points. The importance of accurately representing small changes in pulse shape, illustrated by the historic ignition experiment in December 2022, highlights the necessity for pulse designers at NIF to have access to robust, easy to use, and accurate design software that can integrate with the existing and future ecosystem of software at NIF. To develop and maintain this type of complex software, the Shot Data Systems (SDS) group has recently embraced leveraging a common set of recommended technologies and frameworks for software development across their suite of applications. This paper will detail SDS’s experience migrating an existing legacy Java Swing-based pulse shape editor into a modern web application leveraging technologies recommended by the common tech stack, including Spring Boot, TypeScript, React and Docker with Kubernetes, as well as discuss how embracing a common set of technologies influenced the migration path, improved the developer experience, and how it will benefit the extensibility and maintainability of the application for years to come.
LLNL Release Number: LLNL-ABS-848203
 
poster icon Poster TUPDP120 [0.611 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP120  
About • Received ※ 27 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP145 Position-Based Continuous Energy Scan Status at MAX IV controls, undulator, detector, synchrotron 917
 
  • Á. Freitas, N.S. Al-Habib, B. Bertrand, M. Eguiraun, I. Gorgisyan, A.F. Joubert, J. Lidón-Simon, M. Lindberg, C. Takahashi
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The traditional approach of step scanning in X-ray experiments is often inefficient and may increase the risk of sample radiation damage. In order to overcome these challenges, a new position-based continuous energy scanning system has been developed at MAX IV Laboratory. This system enables stable and repeatable measurements by continuously moving the motors during the scan. Triggers are generated in hardware based on the motor encoder positions to ensure precise data acquisition. Prior to the scan, a list of positions is generated, and triggers are produced as each position is reached. The system uses Tango and Sardana for control and a TriggerGate controller to calculate motor positions and configure the PandABox, which generates the triggers. The system is capable of scanning a single motor, such as a sample positioner, or a combined motion like a monochromator and undulator. In addition, the system can use the parametric trajectory mode of IcePAP driver, which enables continuous scans of coupled axes with non-linear paths. This paper presents the current status of the position-based continuous energy scanning system for BioMAX, FlexPES, and FinEst beamlines at MAX IV and discusses its potential to enhance the efficiency and accuracy of data acquisition at beamline endstations.  
poster icon Poster TUPDP145 [1.943 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP145  
About • Received ※ 05 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 11 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUSDSC02 Integrating Online Analysis with Experiments to Improve X-Ray Light Source Operations interface, real-time, simulation, framework 921
 
  • N.M. Cook, E.G. Carlin, J.A. Einstein-Curtis, R. Nagler, R. O’Rourke
    RadiaSoft LLC, Boulder, Colorado, USA
  • A.M. Barbour, M. Rakitin, L. Wiegart, H. Wijesinghe
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number DE-SC00215553.
The design, execution, and analysis of light source experiments requires the use of sophisticated simulation, controls and data management tools. Existing workflows require significant specialization to accommodate specific beamline operations and data pre-processing steps necessary for more intensive analysis. Recent efforts to address these needs at the National Synchrotron Light Source II (NSLS-II) have resulted in the creation of the Bluesky data collection framework, an open-source library for coordinating experimental control and data collection. Bluesky provides high level abstraction of experimental procedures and instrument readouts to encapsulate generic workflows. We present a prototype data analysis platform for integrating data collection with real time analysis at the beamline. Our application leverages Bluesky in combination with a flexible run engine to execute user configurable Python-based analyses with customizable queueing and resource management. We discuss initial demonstrations to support X-ray photon correlation spectroscopy experiments and future efforts to expand the platform’s features.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUSDSC02  
About • Received ※ 06 October 2023 — Revised ※ 22 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1BCO02 Data Management Infrastructure for European XFEL FEL, data-management, network, hardware 952
 
  • J. Malka, S. Aplin, D. Boukhelef, K. Filippakopoulos, L.G. Maia, T. Piszczek, Mr. Previtali, J. Szuba, K. Wrona
    EuXFEL, Schenefeld, Germany
  • S. Dietrich, MA. Gasthuber, J. Hannappel, M. Karimi, Y. Kemp, R. Lueken, T. Mkrtchyan, K. Ohrenberg, F. Schlünzen, P. Suchowski, C. Voss
    DESY, Hamburg, Germany
 
  Effective data management is crucial to ensure research data is easily accessible and usable. We will present design and implementation of the European XFEL data management infrastructure supporting high level data management services. The system architecture comprises four layers of storage systems, each designed to address specific challenges. The first layer, referred to as online, is designed as a fast cache to accommodate extreme high rates (up to 15GB/s) of data generated during experiment at single scientific instrument. The second layer, called high-performance storage, provides necessary capabilities for data processing both during and after experiments. The layers are incorporated into a single infiniband fabric and connected through a 4km long 1Tb/s link. This allows fast data transfer from the European XFEL experiment hall to the DESY computing center. The third layer, mass-storage, extends the capacity of data storage system to allow mid-term data access for detailed analysis. Finally, the tape archive, provides data safety and long-term archive (5-10years). The high performance and mass storage systems are connected to computing clusters. This allows users to perform near-online and offline data analysis or alternatively export data outside of the European XFEL facility. The data management infrastructure at the European XFEL has the capacity to accept and process up to 2PB of data per day, which demonstrates the remarkable capabilities of all the sub-services involved in this process.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE1BCO02  
About • Received ※ 06 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1BCO04 The LCLS-II Experiment System Vacuum Controls Architecture vacuum, controls, interface, EPICS 962
 
  • M. Ghaly, T.A. Wallace
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by Department of Energy contract DE-AC02-76SF00515.
The LCLS-II Experiment System Vacuum Controls Architecture is a collection of vacuum system design templates, interlock logics, supported components (eg. gauges, pumps, valves), interface I/O, and associated software libraries which implement a baseline functionality and simulation. The architecture also includes a complement of engineering and deployment tools including cable test boxes or hardware simulators, as well as some automatic configuration tools. Vacuum controls at LCLS spans from rough vacuum in complex pumping manifolds, protection of highly-sensitive x-ray optics using fast shutters, maintenance of ultra-high vacuum in experimental sample delivery setups, and beyond. Often, the vacuum standards for LCLS systems exceeds what most vendors are experienced with. The system must maintain high-availability, while also remaining flexible and handling ongoing modifications. This paper will review the comprehensive architecture, the requirements of the LCLS systems, and introduce how to use it for new vacuum system designs. The architecture is meant to influence all phases of a vacuum system lifecycle, and ideally could become a shared project for installations beyond LCLS-II.
 
slides icon Slides WE1BCO04 [3.154 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE1BCO04  
About • Received ※ 31 October 2023 — Revised ※ 20 November 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO02 In the Midst of Fusion Ignition: A Look at the State of the National Ignition Facility Control and Information Systems controls, laser, target, optics 973
 
  • M. Fedorov, A.I. Barnes, L. Beaulac, A.D. Casey, J.R. Castro Morales, J. Dixon, C.M. Estes, M.S. Flegel, V.K. Gopalan, S. Heerey, R. Lacuata, V.J. Miller Kamm, B.P. Patel, M. Paul, N.I. Spafford, J.L. Vaher
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The National Ignition Facility (NIF) is the world’s largest and most energetic 192-laser-beam system which conducts experiments in High Energy Density (HED) physics and Inertial Confinement Fusion (ICF). In December 2022, the NIF achieved a scientific breakthrough when, for the first time ever, the ICF ignition occurred under laboratory conditions. The key to the NIF’s experimental prowess and versatility is not only its power but also its precise control. The NIF controls and data systems place the experimenter in full command of the laser and target diagnostics capabilities. The recently upgraded Master Oscillator Room (MOR) system precisely shapes NIF laser pulses in the temporal, spatial, and spectral domains. Apart from the primary 10-meter spherical target chamber, the NIF laser beams can now be directed towards two more experimental stations to study laser interactions with optics and large full beam targets. The NIF’s wide range of target diagnostics continues to expand with new tools to probe and capture complex plasma phenomena using x-rays, gamma-rays, neutrons, and accelerated protons. While the increasing neutron yields mark the NIF’s steady progress towards exciting experimental regimes, they also require new mitigations for radiation damage in control and diagnostic electronics. With many NIF components approaching 20 years of age, a Sustainment Plan is now underway to modernize NIF, including controls and information systems, to assure NIF operations through 2040.
LLNL Release Number: LLNL-ABS-847574
 
slides icon Slides WE2BCO02 [4.213 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO02  
About • Received ※ 02 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO07 15 Years of ALICE DCS detector, operation, controls, interface 1002
 
  • P.Ch. Chochula, A. Augustinus, P.M. Bond, A.N. Kurepin, M. Lechman, D. Voscek
    CERN, Meyrin, Switzerland
  • O. Pinazza
    INFN-Bologna, Bologna, Italy
 
  The ALICE experiment studies ultra relativistic heavy ion collisions at the Large Hadron Collider at CERN. Its Detector Control System (DCS) has been ensuring the experiment safety and stability of data collection since 2008. A small central team at CERN coordinated the developments with collaborating institutes and defined the operational principles and tools. Although the basic architecture of the system remains valid, it has had to adapt to the changes and evolution of its components. The introduction of new detectors into ALICE has required the redesign of several parts of the system, especially the front-end electronics control, which triggered new developments. Now, the DCS enters the domain of data acquisition, and the controls data is interleaved with the physics data stream, sharing the same optical links. The processing of conditions data has moved from batch collection at the end of data-taking to constant streaming. The growing complexity of the system has led to a big focus on the operator environment, with efforts to minimize the risk of human errors. This presentation describes the evolution of the ALICE control system over the past 15 years and highlights the significant improvements made to its architecture. We discuss how the challenges of integrating components developed in tens of institutes worldwide have been mastered in ALICE.
This proposed contribution is complemented by poster submitted by Ombretta Pinazza who will explain the user interfaces deployed in ALICE.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO07  
About • Received ※ 06 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 21 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO06 Assonant: A Beamline-Agnostic Event Processing Engine for Data Collection and Standardization controls, software, synchrotron, data-management 1025
 
  • P.B. Mausbach, E.X. Miqueles, A. Pinto
    LNLS, Campinas, Brazil
 
  Synchrotron radiation facilities comprise beamlines designed to perform a wide range of X-ray experimental techniques which require complex instruments to monitor thermodynamic variables, sample-related variables, among others. Thus, synchrotron beamlines can produce heterogeneous sets of data and metadata, hereafter referred to as data, which impose several challenges to standardizing them. For open science and FAIR principles, such standardization is paramount for research reproducibility, besides accelerating the development of scalable and reusable data-driven solutions. To address this issue, the Assonant was devised to collect and standardize the data produced at beamlines of Sirius, the Brazilian fourth-generation synchrotron light source. This solution enables a NeXus-compliant technique-centric data standard at Sirius transparently for beamline teams by removing the burden of standardization tasks from them and providing a unified standardization solution for several techniques at Sirius. The Assonant implements a software interface to abstract data format-related specificities and to send the produced data to an event-driven infrastructure composed of streaming processing and microservices, able to transform the data flow according to NeXus*. This paper presents the development process of Assonant, the strategy adopted to standardize beamlines with different operating stages, and challenges faced during the standardization process for macromolecular crystallography and imaging data at Sirius.
* M. Könnecke et al., ’The nexus data format’, Journal of applied crystallography, vol. 48, no. 1, pp. 301-305, 2015.
 
slides icon Slides WE3BCO06 [4.909 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO06  
About • Received ※ 05 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 18 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO07 Extending the ICAT Metadata Catalogue to New Scientific Use Cases SRF, site, synchrotron, interface 1033
 
  • A. Götz, M. Bodin, A. De Maria Antolinos, M. Gaonach
    ESRF, Grenoble, France
  • M. AlMohammad, S.A. Matalgah
    SESAME, Allan, Jordan
  • P. Austin, V. Bozhinov, L.E. Davies, A. Gonzalez Beltran, K.S. Phipps
    STFC/RAL/SCD, Didcot, United Kingdom
  • R. Cabezas Quirós
    ALBA-CELLS, Cerdanyola del Vallès, Spain
  • R. Krahl
    HZB, Berlin, Germany
  • A. Pinto
    LNLS, Campinas, Brazil
  • K. Syder
    DLS, Oxfordshire, United Kingdom
 
  The ICAT metadata catalogue is a flexible solution for managing scientific metadata and data from a wide variety of domains following the FAIR data principles. This paper will present an update of recent developments of the ICAT metadata catalogue and the latest status of the ICAT collaboration. ICAT was originally developed by UK Science and Technology Facilities Council (STFC) to manage the scientific data of ISIS Neutron and Muon Source and Diamond Light Source. They have since been joined by a number of other institutes including ESRF, HZB, SESAME, and ALBA who together now form the ICAT Collaboration [1]. ICAT has been used to manage petabytes of scientific data for ISIS, DLS, ESRF, HZB, and in the future SESAME and ALBA and make these data FAIR. The latest version of the ICAT core as well as the new user interfaces, DataGateway and DataHub, and extensions to ICAT for implementing free text searching, a common search interface across Photon and Neutron catalogues, a protocol-based interface that allows making the metadata available for findability, electronic logbooks, sample tracking, and web-based data and domain specific viewers developed by the community will be presented. Finally recent developments to use ICAT to develop applications for processed data with rich metadata in the fields of small angle scattering, macromolecular crystallography and cryo-electron microscopy will be described. [1] https://icatproject.org  
slides icon Slides WE3BCO07 [7.888 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO07  
About • Received ※ 05 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO08 Efficient and Automated Metadata Recording and Viewing for Scientific Experiments at MAX IV TANGO, interface, database, controls 1041
 
  • D. van Dijken, V. Da Silva, M. Eguiraun, V. Hardion, J.M. Klingberg, M. Leorato, M. Lindberg
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  With the advancements in beamline instrumentation, synchrotron research facilities have seen a significant improvement. The detectors used today can generate thousands of frames within seconds. Consequently, an organized and adaptable framework is essential to facilitate the efficient access and assessment of the enormous volumes of data produced. Our communication presents a metadata management solution recently implemented at MAX IV, which automatically retrieves and records metadata from Tango devices relevant to the current experiment. The solution includes user-selected scientific metadata and predefined defaults related to the beamline setup, which are integrated into the Sardana control system and automatically recorded during each scan via the SciFish[1] library. The metadata recorded is stored in the SciCat[2] database, which can be accessed through a web-based interface called Scanlog[3]. The interface, built on ReactJS, allows users to easily sort, filter, and extract important information from the recorded metadata. The tool also provides real-time access to metadata, enabling users to monitor experiments and export data for post-processing. These new software tools ensure that recorded data is findable, accessible, interoperable and reusable (FAIR[4]) for many years to come. Collaborations are on-going to develop these tools at other particle accelerator research facilities.
[1] https://gitlab.com/MaxIV/lib-maxiv-scifish
[2] https://scicatproject.github.io/
[3] https://gitlab.com/MaxIV/svc-maxiv-scanlog
[4] https://www.nature.com/articles/sdata201618
 
slides icon Slides WE3BCO08 [1.914 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO08  
About • Received ※ 06 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO09 IR of FAIR - Principles at the Instrument Level software, GUI, framework, controls 1046
 
  • G. Günther, O. Mannix, V. Serve
    HZB, Berlin, Germany
  • S. Baunack
    KPH, Mainz, Germany
  • L. Capozza, F. Maas, M.C. Wilfert
    HIM, Mainz, Germany
  • O. Freyermuth
    Uni Bonn, Bonn, Germany
  • P. Gonzalez-Caminal, S. Karstensen, A. Lindner, I. Oceano, C. Schneide, K. Schwarz, T. Schörner-Sadenius, L.-M. Stein
    DESY, Hamburg, Germany
  • B. Gou
    IMP/CAS, Lanzhou, People’s Republic of China
  • J. Isaak, S. Typel
    TU Darmstadt, Darmstadt, Germany
  • A.K. Mistry
    GSI, Darmstadt, Germany
 
  Awareness of the need for FAIR data management has increased in recent years but examples of how to achieve this are often missing. Focusing on the large-scale instrument A4 at the MAMI accelerator, we transfer findings of the EMIL project at the BESSY synchrotron* to improve raw data, i.e. the primary output stored on long-term basis, according to the FAIR principles. Here, the instrument control software plays a key role as the central authority to start measurements and orchestrate connected (meta)data-taking processes. In regular discussions we incorporate the experiences of a wider community and engage to optimize instrument output through various measures from conversion to machine-readable formats over metadata enrichment to additional files creating scientific context. The improvements were already applied to currently built next generation instruments and could serve as a general guideline for publishing data sets.
*G. Günther et al. FAIR meets EMIL: Principles in Practice. Proceedings of ICALEPCS2021, https://doi.org/10.18429/JACoW-ICALEPCS2021-WEBL05
 
slides icon Slides WE3BCO09 [1.400 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO09  
About • Received ※ 04 October 2023 — Revised ※ 24 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3AO02 High Fidelity Pulse Shaping for the National Ignition Facility target, diagnostics, timing, laser 1058
 
  • A.S. Gowda, A.I. Barnes, B.W. Buckley, A. Calonico-Soto, E.J. Carr, J.T. Chou, P.T. Devore, J.-M.G. Di Nicola, V.K. Gopalan, J. Heebner, V.J. Hernandez, R.D. Muir, A. Pao, L. Pelz, L. Wang, A.T. Wargo
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The National Ignition Facility (NIF) is the world’s most energetic laser capable of delivering 2.05MJ of energy with peak powers up to 500 terawatts on targets a few mms in diameter. This enables extreme conditions in temperature and pressure allowing a wide variety of exploratory experiments from triggering fusion ignition to emulating temperatures at the center of stars or pressures at the center of giant planets. The capability enabled the groundbreaking results of December 5th, 2022 when scientific breakeven in fusion was demonstrated with a target gain of 1.5. A key aspect of supporting various experiments at NIF is the ability to custom shape the pulses of the 48 quads independently with high fidelity as needed by the experimentalists. For more than 15 years, the Master Oscillator Room’s (MOR) pulse shaping system has served NIF well. However, a pulse shaping system that would provide higher shot-to-shot stability, better power balance and accuracy across the 192 beams is required for future NIF experiments including ignition. The pulse shapes requested vary drastically at NIF which led to challenging requirements for the hardware, timing and closed loop shaping systems. In the past two years, a High-Fidelity Pulse Shaping System was designed, and a proof-of-concept system was shown to meet all requirements. This talk will discuss design challenges, solutions and how modernization of the pulse shaping hardware helped simple control algorithms meet the stringent requirements set by the experimentalists.
LLNL Release Number: LLNL-ABS-848060
 
slides icon Slides WE3AO02 [6.678 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3AO02  
About • Received ※ 04 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1BCO05 Diamond Light Source Athena Platform software, controls, framework, EPICS 1115
 
  • J. Shannon, C.A. Forrester, K.A. Ralphs
    DLS, Oxfordshire, United Kingdom
 
  The Athena Platform aims to replace, upgrade and modernise the capabilities of Diamond Light Source’s acquisition and controls tools, providing an environment for better integration with information management and analysis functionality. It is a service-based experiment orchestration system built on top of NSLS-II’s Python based Bluesky/Ophyd data collection framework, providing a managed and extensible software deployment local to the beamline. By using industry standard infrastructure provision, security and interface technologies we hope to provide a sufficiently flexible and adaptable platform, to meet the wide spectrum of science use cases and beamline operation models in a reliable and maintainable way. In addition to a system design overview, we describe here some initial test deployments of core capabilities to a number of Diamond beamlines, as well as some of the technologies developed to support the overall delivery of the platform.  
slides icon Slides TH1BCO05 [1.409 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH1BCO05  
About • Received ※ 05 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 16 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2BCO03 The LCLS-II Experiment Control System controls, EPICS, PLC, vacuum 1172
 
  • T.A. Wallace, D.L. Flath, M. Ghaly, T.K. Johnson, K.R. Lauer, Z.L. Lentz, R.S. Tang-Kong, J. Yin
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
The Linac Coherent Light Source (LCLS) has been undergoing upgrades for several years now through at least two separate major projects: LCLS-II a DOE 403.13b project responsible for upgrading the accelerator, undulators and some front-end beam delivery systems, and the LCLS-II Strategic Initiative or L2SI project which assumed responsibility for upgrading the experiment endstations to fully utilize the new XFEL machine capabilities to be delivered by LCLS-II. Both projects included scope to design, install and commission a control system prepared to handle the risks associated with the tenfold increase in beam power we will eventually achieve. This paper provides an overview of the new control system architecture from the LCLS-II and L2SI projects and status of its commissioning.
 
slides icon Slides TH2BCO03 [2.700 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH2BCO03  
About • Received ※ 04 November 2023 — Accepted ※ 11 December 2023 — Issued ※ 16 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO02 Enhancing Data Management with SciCat: A Comprehensive Overview of a Metadata Catalogue for Research Infrastructures database, neutron, controls, framework 1195
 
  • C. Minotti, A. Ashton, S.E. Bliven, S. Egli
    PSI, Villigen PSI, Switzerland
  • F.B. Bolmsten, M. Novelli, T.S. Richter
    ESS, Copenhagen, Denmark
  • M. Leorato
    MAX IV Laboratory, Lund University, Lund, Sweden
  • D. McReynolds
    LBNL, Berkeley, California, USA
  • L.A. Shemilt
    RFI, Didcot, United Kingdom
 
  As the volume and quantity of data continue to increase, the role of data management becomes even more crucial. It is essential to have tools that facilitate the management of data in order to manage the ever-growing amount of data. SciCat is a metadata catalogue that utilizes a NoSQL database, enabling it to accept heterogeneous data and customize it to meet the unique needs of scientists and facilities. With its API-centric architecture, SciCat simplifies the integration process with existing infrastructures, allowing for easy access to its capabilities and seamless integration into workflows, including cloud-based systems. The session aims to provide a comprehensive introduction of SciCat, a metadata catalogue started as a collaboration between PSI, ESS, and MAXIV, which has been adopted by numerous Research Infrastructures (RIs) worldwide. The presentation will delve into the guiding principles that underpin this project and the challenges that it endeavours to address. Moreover, it will showcase the features that have been implemented, starting from the ingestion of data to its eventual publication. Given the growing importance of the FAIR (Findable, Accessible, Interoperable, and Reusable) principles, the presentation will touch upon how their uptake is facilitated and will also provide an overview of the work carried out under the Horizon 2020 EU grant for FAIR.  
slides icon Slides THMBCMO02 [5.158 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO02  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO17 FAIR Data of Physical and Digital Beamlines simulation, software, controls, GUI 1231
 
  • G. Günther, O. Mannix, O. Ruslan, S. Vadilonga
    HZB, Berlin, Germany
 
  Simulations play a crucial role in instrument design, as a digital precursor of a real-world object they contain a comprehensive description of the setup. Unfortunately, this digital representation is often neglected once the real instrument is fully commissioned. To preserve the symbiosis of simulated and real-world instrument beyond commissioning we connect the two worlds through the instrument control software. The instrument control simultaneously starts measurements and simulations, receives feedback from both, and directs (meta)data to a NeXus file - a standard format in photon and neutron science. The instrument section of the produced NeXus file is enriched with detailed simulation parameters where the current state of the instrument is reflected by including real motor positions such as incorporating the actual aperture of a slit system. As a result, the enriched instrument description increases the reusability of experimental data in sense of the FAIR principles. The data is ready to be exploited by machine-learning techniques, such as for predictive maintenance applications as it is possible to perform simulations of a measurement directly from the NeXus file. The realization at the Aquarius beamline * at Bessy II in connection with the Ray-UI simulation software ** and RayPyNG API *** serves as a prototype for a more general application.
* https://www.helmholtz-berlin.de/forschung/oe/wi/optik-strahlrohre/projekte/aquariusen.html
** https://doi.org/10.1063/1.5084665
*** https://pypi.org/project/raypyng
 
slides icon Slides THMBCMO17 [0.632 MB]  
poster icon Poster THMBCMO17 [0.828 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO17  
About • Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 14 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO18 Advancements in Beamline Digital Twin at BESSYII simulation, operation, software, MMI 1236
 
  • S. Vadilonga, G. Günther, S. Kazarski, R. Ovsyannikov, S.S. Sachse, W. Smith
    HZB, Berlin, Germany
 
  This presentation reports on the status of beamline digital twins at BESSY II. To provide a comprehensive beamline simulation experience we have leveraged BESSY II’s x-ray tracing program, RAY-UI[*], widely used for beamline design and commissioning and best adapted to the requirements of our soft X-ray source BESSY II. We created a Python API, RayPyNG, capable to convert our library of beamline configuration files produced by RAY-UI into Python objects[**]. This allows to embed beamline simulation into Bluesky[***], our experimental controls software ecosystem. All optical elements are mapped directly into the Bluesky device abstraction (Ophyd). Thus beamline operators can run simulations and operate real systems by a common interface, allowing to directly compare theory predictions with real-time results[****]. We will discuss the relevance of this digital twin for process tuning in terms of enhanced beamline performance and streamlined operations. We will shortly discuss alternatives to RAY-UI like other software packages and ML/AI surrogate models.
[*]https://doi.org/10.1063/1.5084665
[**]https://raypyng.readthedocs.io/
[***]https://doi.org/10.1080/08940886.2019.1608121
[****]https://raypyng-bluesky.readthedocs.io/
 
slides icon Slides THMBCMO18 [0.333 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO18  
About • Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 16 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO22 Towards Defining a Synchronization Standard Between Beamline Components and Synchrotron Accelerators interface, hardware, FPGA, synchrotron 1242
 
  • J.A. Avila-Abellan, X. Serra-Gallifa
    ALBA-CELLS, Cerdanyola del Vallès, Spain
  • T.M. Cobb
    DLS, Oxfordshire, United Kingdom
  • R. Hino
    ESRF, Grenoble, France
  • O.H. Seeck
    DESY, Hamburg, Germany
  • S. Zhang
    SOLEIL, Gif-sur-Yvette, France
 
  Funding: LEAPS-INNOV project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 101004728
Standardization is a magic word in the electronics engineering jargon. Under its umbrella, it is generated the utopia of transparent integration with the rest of the parts with minimal extra effort for the software integration. But the experimental setup in a synchrotron beamline presents multiple challenges: it is highly dynamic and diverse. In the frame of LEAPS-INNOV project (*), the Task 3 of Work Package 5 aims to define a standard for synchronization in the beamline sample environment. Their partners (ALBA, DESY, DLS, ESRF and SOLEIL) have already reached a common vision of synchronization requirements. This paper first details the participants’ actual synchronization needs on their facilities. Next, the requirements foreseen for the future are outlined in terms of interfaces, time constraints and compatibility with timing systems. To conclude, we summarize the current state of the project: the hardware interfaces and the hardware platform definition. They both have been decided considering long-term availability, use of standard sub-components, and keeping the compromise between cost, development time, maintenance, reliability, flexibility and performance. This hardware architecture proposal meets the identified requirements. In the future, under the scope of LEAPS-INNOV, a demonstrator will be built, and we will work with the industry for its future commercialization.
 
slides icon Slides THMBCMO22 [1.592 MB]  
poster icon Poster THMBCMO22 [0.760 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO22  
About • Received ※ 06 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO29 Motion Controls for ORNL Neutron Science Experimental Beamlines controls, EPICS, HOM, software 1261
 
  • X. Geng, A. Groff, M.R. Pearson, G. Taufer
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy
This paper presents a comprehensive overview of the motion control systems employed within the neutron science user facilities at Oak Ridge National Laboratory (ORNL). The Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) at ORNL have a total of 35 neutron beam lines with numerous motors for mo-tion control. The motion systems vary in complexity from a linear sample positioning stage to multi-axis end stations. To enhance the capabilities of these motion systems, a concerted effort has been made to establish standardized hardware and flexible software that improve performance, increase reliability and provide the capability for automated experiments. The report discusses the various motion controllers used, the EPICS-based IOCs (Input Output Controllers), high-level motion software, and plans for ongoing upgrades and new projects.
 
slides icon Slides THMBCMO29 [1.893 MB]  
poster icon Poster THMBCMO29 [6.483 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO29  
About • Received ※ 05 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 22 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO31 LImA2: Edge Distributed Acquisition and Processing Framework for High Performance 2D Detectors detector, controls, SRF, GPU 1269
 
  • S. Debionne, L. Claustre, P. Fajardo, A. Götz, A. Homs Puron, J. Kieffer, R. Ponsard
    ESRF, Grenoble, France
 
  LImA* is a framework born at the ESRF for 2D Data Acquisition (DAQ), basic Online Data Analysis (ODA) and processing with high-throughput detectors. While in production for 15 years in several synchrotron facilities, the ever-increasing detector frame rates make more and more difficult performing DAQ & ODA tasks on a single computer**. LImA2 is designed to scale horizontally, using multiple hosts for DAQ & ODA. This enables more advanced strategies for data feature extraction while keeping a low latency. LImA2 separates three functional blocks: detector control, image acquisition, and data processing. A control process configures the detector, while one or more receiver processes perform the DAQ and ODA, like the generation of fast feedback signals. The detectors currently supported in LImA2 are the PSI/Jungfrau, the ESRF/Smartpix and the Dectris/Eiger2. The former performs pixel assembly and intensity correction in GPU; the second exploits RoCE capabilities; and the latter features dual threshold, multi-band images. Raw data rates up to 8 GByte/s can be handled by a single computer, scalable if necessary. In addition to a classic processing, advanced pipelines are also implemented. A Serial-MX/pyFAI*** pipeline extracts diffraction peaks in GPU in order to filter low quality data. NVIDIA GPUDirect is used by a third pipeline providing 2D processing with remarkable low latency. IBM Power9 optimizations like the NX GZIP compression and the PCI-e multi-host extension are exploited.
* LIMA - https://accelconf.web.cern.ch/ICALEPCS2013/papers/frcoaab08.pdf
** Jungfraujoch - https://doi.org/10.1107/S1600577522010268
*** pyFAI - https://doi.org/10.1107/S1600576715004306
 
slides icon Slides THMBCMO31 [0.572 MB]  
poster icon Poster THMBCMO31 [14.959 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO31  
About • Received ※ 06 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO34 Ultra-High Throughput Automated Macromolecular Crystallography Data Collection Using the Bluesky Framework software, controls, data-acquisition, hardware 1280
 
  • D.P. Perl, N. Frisina, D.E. Oram, N.P. Paterson
    DLS, Oxfordshire, United Kingdom
 
  At Diamond Light Source, several Macromolecular Crystallography (MX) beamlines focus on, or include, completely automated data collection. This is used primarily for high throughput collection on samples with known or partially known structures, for example, screening a protein for drug or drug fragment interactions. The automated data collection routines are currently built on legacy experiment orchestration software which includes a lot of redundancy originally implemented for safety when human users are controlling the beamline, but which is inefficient when the beamline hardware occupies a smaller number of known states. Diamond is building its next generation, service-based, Data Acquisition Platform, Athena, using NSLSII’s Bluesky experiment orchestration library. The Bluesky library facilitates optimising the orchestration of experiment control by simplifying the work necessary to parallelise and reorganise the steps of an experimental procedure. The MX data acquisition team at Diamond is using the Athena platform to increase the possible rate of automated MX data collection both for immediate use and in preparation to take advantage of the upgraded Diamond-II synchrotron, due in several years. This project, named Hyperion, will include sample orientation and centring, fluorescence scanning, optical monitoring, collection strategy determination, and rotation data collection at multiple positions on a single sample pin.  
slides icon Slides THMBCMO34 [1.002 MB]  
poster icon Poster THMBCMO34 [3.445 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO34  
About • Received ※ 04 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP012 Evolution of the Laser Megajoule Timing System laser, timing, diagnostics, target 1312
 
  • T. Somerlinck
    CEA, LE BARP cedex, France
  • S. Hocquet, D. Monnier-Bourdin
    Greenfield Technology, Massy, France
 
  The Laser MegaJoule (LMJ), a 176-beam laser facility developed by CEA, is located at the CEA CESTA site near Bordeaux. The LMJ facility is part of the French Simulation Program, which combines improvement of theoretical models and data used in various fields of physics, high performance numerical simulations and experimental validation. It is designed to deliver about 1.4 MJ of energy on targets, for high energy density physics experiments, including fusion experiments. With 120 operational beams at the end of 2023, operational capabilities are gradually increasing until the full completion of the LMJ facility by 2025. To verify the synchronization of the precise delay generators, used on each bundle, a new timing diagnostic has been designed to observe the 1w and 3w fiducial signals. Meanwhile, due to electronic obsolescence, a new modified prototype precise of a delay generator, with ’new and old channels’, has been tested and compared. In this paper, a review of the LMJ synchronization report is given with a description of the first timing diagnostic as well as an overview of the LMJ delay generator obsolescence update. It also presents some leads for a future timing system.
LMJ: Laser MegaJoule
CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives
 
poster icon Poster THPDP012 [3.535 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP012  
About • Received ※ 10 October 2023 — Revised ※ 14 November 2023 — Accepted ※ 19 December 2023 — Issued ※ 21 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP014 SECoP and SECoP@HMC - Metadata in the Sample Environment Communication Protocol controls, software, neutron, interface 1322
 
  • K. Kiefer, B. Klemke, L. Rossa, P. Wegmann
    HZB, Berlin, Germany
  • G. Brandl, E. Faulhaber, A. Zaft
    MLZ, Garching, Germany
  • N. Ekström, A. Pettersson
    ESS, Lund, Sweden
  • J. Kotanski, T. Kracht
    DESY, Hamburg, Germany
  • M. Zolliker
    PSI, Villigen PSI, Switzerland
 
  Funding: The project SECoP@HMC receives funding by the Helmholtz Association’s Initiative and Networking Fund (IVF).
The integration of sample environment (SE) equipment in x-ray and neutron experiments is a complex challenge both in the physical world and in the digital world. Dif-ferent experiment control software offer different interfac-es for the connection of SE equipment. Therefore, it is time-consuming to integrate new SE or to share SE equipment between facilities. To tackle this problem, the International Society for Sample Environment (ISSE, [1]) developed the Sample Environment Communication Protocol (SECoP) to standardize the communication between instrument control software and SE equipment [2]. SECoP offers, on the one hand, a generalized way to control SE equipment. On the other hand, SECoP holds the possibility to transport SE metadata in a well-defined way. In addition, SECoP provides machine readable self-description of the SE equipment which enables a fully automated integration into the instrument control soft-ware and into the processes for data storage. Using SECoP as a common standard for controlling SE equipment and generating SE metadata will save resources and intrinsi-cally give the opportunity to supply standardized and FAIR data compliant SE metadata. It will also supply a well-defined interface for user-provided SE equipment, for equipment shared by different research facilities and for industry. In this article will show how SECoP can help to provide a meaningful and complete set of metadata for SE equipment and we will present SECoP and the SECoP@HMC project supported by the Helmholtz Metadata Collaboration.
*K. Kiefer, et al. (2020). An introduction to SECoP - the sample environment communication protocol. Journal of Neutron Research, 21(3-4), pp.181-195
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP014  
About • Received ※ 06 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 22 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP017 A Data Acquisition Middle Layer Server with Python Support for Linac Operation and Experiments Monitoring and Control cavity, FEL, controls, operation 1330
 
  • V. Rybnikov, A. Sulc
    DESY, Hamburg, Germany
 
  This paper presents online anomaly detection on low-level radio frequency (LLRF) cavities running on FLASH/XFEL DAQ system*. The code is run by a DAQ Middle Layer (ML) server, which has on-line access to all collected data. The ML server executes a Python script that runs a pre-trained machine learning model on every shot in the FLASH/XFEL machine. We discuss the challenges associated with real-time anomaly detection due to high data rates generated by RF cavities, and introduce a DAQ system pipeline and algorithms used for online detection on arbitrary channels in our control system. The system’s performance is evaluated using real data from operational RF cavities. We also focus on the DAQ monitor server’s features and its implementation.
*A. Aghababyan et al., ’Multi-Processor Based Fast Data Acquisition for a Free Electron Laser and Experiments’, in IEEE Transactions on Nuclear Science, vol. 55, No. 1, pp. 256-260, February 2008
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP017  
About • Received ※ 02 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP036 Research on HALF Historical Data Archiver Technology database, EPICS, controls, distributed 1394
 
  • X.K. Sun, D.D. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • H. Chen
    USTC, SNST, Anhui, People’s Republic of China
 
  The Hefei Advanced Light Facility (HALF) is a 2.2-GeV 4th synchrotron radiation light source, which is scheduled to start construction in Hefei, China in 2023. The HALF contains an injector and a 480-m diffraction limited storage ring, and 10 beamlines for phase one. The HALF historical data archiver system is responsible to store operation data for the entire facility including accelerator and beamlines. It is necessary to choose a high-performance database for the massive structured data generated by HALF. A fair test platform is designed and built to test the performance of six commonly used databases in the accelerator field. The test metrics include reading and writing performance, availability, scalability, and software ecosystem. This paper introduces the design of the database test scheme, the construction of the test platform and the future test plan in detail.  
poster icon Poster THPDP036 [0.933 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP036  
About • Received ※ 28 September 2023 — Revised ※ 26 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP040 Control System of the ForMAX Beamline at the MAX IV Synchrotron controls, detector, TANGO, synchrotron 1402
 
  • W.T. Kitka
    S2Innovation, Kraków, Poland
  • V. Da Silva, V.H. Haghighat, Y.L. Li, J. Lidón-Simon, M. Lindberg, S. Malki, K. Nygård, E. Rosendahl
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  This paper describes the design and implementation of the control system for the ForMAX beamline at the MAX IV synchrotron. MAX IV is a Swedish national laboratory that houses one of the brightest synchrotron light sources in the world. ForMAX is one of the beamlines at MAX IV and is funded by the Knut and Alice Wallenberg Foundation and Swedish industry via Treesearch. To meet the specific demands of ForMAX, a new control system was developed using the TANGO Controls and Sardana frameworks. Using these frameworks enables seamless integration of hardware and software, ensuring efficient and reliable beamline operation. The control system was designed to support a variety of experiments, including multiscale structural characterization from nanometer to millimeter length scales by combining full-field tomographic imaging, small- and wide-angle X-ray scattering (SWAXS), and scanning SWAXS imaging in a single instrument. The system allows for precise control of the beam position, energy, intensity, and sample position. Furthermore, the system provides real-time feedback on the status of the experiments, allowing for adjustments to be made quickly and efficiently. In conclusion, the design and implementation of the control system for the ForMAX beamline at the MAX IV synchrotron has resulted in a highly flexible and efficient experimental station. TANGO Controls and Sardana have allowed for seamless integration of hardware and software, enabling precise and reliable control of the beamline for a wide range of experiments.  
poster icon Poster THPDP040 [0.668 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP040  
About • Received ※ 04 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP066 Visualization Tools to Monitor Structure and Growth of an Existing Control System detector, controls, software, operation 1485
 
  • O. Pinazza, A. Augustinus, P.M. Bond, P.Ch. Chochula, A.N. Kurepin, M. Lechman, D. Voscek
    CERN, Meyrin, Switzerland
  • A.N. Kurepin
    RAS/INR, Moscow, Russia
 
  The ALICE experiment at the LHC has already been in operation for 15 years, and during its life several detectors have been replaced, new instruments installed, and some technologies changed. The control system has therefore also had to adapt, evolve and expand, sometimes departing from the symmetry and compactness of the original design. In a large collaboration, different groups contribute to the development of the control system of their detector. For the central coordination it is important to maintain the overview of the integrated control system to assure its coherence. Tools to visualize the structure and other critical aspects of the system can be of great help and can highlight problems or features of the control system such as deviations from the agreed architecture. This paper will present that existing tools, such as graphical widgets available in the public domain, or techniques typical of scientific analysis, can be adapted and help assess the coherence of the development, revealing any weaknesses and highlighting the interdependence of parts of the system. We show how we have used some of these techniques to analyse the coherence of the ALICE control system, and how this contributed to pointing out criticalities and key points.  
poster icon Poster THPDP066 [13.717 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP066  
About • Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP073 Scilog: A Flexible Logbook System for Experiment Data Management database, target, controls, GUI 1512
 
  • K. Wakonig, A. Ashton, C. Minotti
    PSI, Villigen PSI, Switzerland
 
  Capturing both raw and metadata during an experiment is of the utmost importance, as it provides valuable context for the decisions made during the experiment and the acquisition strategy. However, logbooks often lack seamless integration with facility-specific services such as authentication and data acquisition systems and can prove to be a burden, particularly in high-pressure situations during experiments. To address these challenges, SciLog has been developed as a logbook system utilizing MongoDB, Loopback, and Angular. Its primary objective is to provide a flexible and extensible environment, as well as a user-friendly interface. SciLog relies on atomic entries in a NoSQL database that can be easily queried, sorted, and displayed according to the user’s requirements. The integration with facility-specific authorization systems and the automatic import of new experiment proposals enable a user experience that is specifically tailored for the challenging environment of experiments conducted at large research facilities. The system is currently in use during beam time at the Paul Scherrer Institut, where it is collecting valuable feedback from scientists to enhance its capabilities.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP073  
About • Received ※ 05 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 11 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP082 Teaching an Old Accelerator New Tricks database, controls, operation, linac 1545
 
  • D.J. Novak, K.J. Bunnell, C. Dickerson, D. Stanton
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. This research used resources of ANLs ATLAS facility, which is a DOE Office of Science User Facility.
The Argonne Tandem Linac Accelerator System (ATLAS) has been a National User Facility since 1985. In that time, many of the systems that help operators retrieve, modify, and store beamline parameters have not kept pace with the advancement of technology. Development of a new method of storing and retrieving beamline parameters resulted in the testing and installation of a time-series database as a potential replacement for the traditional relational database. InfluxDB was selected due to its self-hosted Open-Source version availability as well as the simplicity of installation and setup. A program was written to periodically gather all accelerator parameters in the control system and store them in the time-series database. This resulted in over 13,000 distinct data points, captured at 5-minute intervals. A second test captured 35 channels on a 1-minute cadence. Graphing of the captured data is being done on Grafana, an Open-Source version is available that co-exists well with InfluxDB as the back-end. Grafana made visualizing the data simple and flexible. The testing has allowed for the use of modern graphing tools to generate new insights into operating the accelerator, as well as opened the door to building large data sets suitable for Artificial Intelligence and Machine Learning applications.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP082  
About • Received ※ 10 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP101 Creating of HDF5 Files as Data Source for Analyses Using the Example of ALPS IIc and the DOOCS Control System controls, software, photon, GUI 1570
 
  • S. Karstensen, P. Gonzalez-Caminal, A. Lindner, I. Oceano, V. Rybnikov, K. Schwarz, G. Sedov
    DESY, Hamburg, Germany
  • G. Günther, O. Mannix
    HZB, Berlin, Germany
 
  ALPS II is a light-shining through a wall (LSW) experiment to search for WISPs (very Weakly Interacting Slim Particles). Potential WISP candidates are axion-like particles or hidden sector photons. Axion-like particles may convert to light (and vice versa) in presence of a magnetic field. Similarly, hidden sector photons "mix" with light independent of any magnetic fields. This is exploited by ALPS II- Light from strong laser is shone into a magnetic field. Laser photons can be converted into a WISPs in front of a light-blocking barrier and reconverted into photons behind that barrier.  The experiment exploits optical resonators for laser power build-up in a large-scale optical cavity to boost the available power for the WISP production as well as their reconversion probability to light. The Distributed Object-Oriented Control System - DOOCS - provides a versatile software framework for creating accelerator-based control system applications. These can range from monitoring simple temperature sensors up to high-level controls and feedbacks of beam parameters as required for complex accelerator operations. In order to enable data analysis by researchers who do not have access to the DOOCS internal control system to read measured values, the measurement and control data are extracted from the control system and saved in HDF5 file format. Through this process, the data is decoupled from the control system and can be analysed on the NAF computer system, among other things. NodeRed acts here as a graphical tool for creating HDF5 files.  
poster icon Poster THPDP101 [50.659 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP101  
About • Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THSDSC03 Integrate EPICS 7 with MATLAB Using PVAccess for Python (P4P) Module EPICS, controls, interface, status 1580
 
  • K.T. Kim, J.J. Bellister, K.H. Kim, E. Williams, S. Zelazny
    SLAC, Menlo Park, California, USA
 
  MATLAB is essential for accelerator scientists engaged in data analysis and processing across diverse fields, including particle physics experiments, synchrotron light sources, XFELs, and telescopes, due to its extensive range of built-in functions and tools. Scientists also depend on EPICS 7* to control and monitor complex systems. Since Python has gained popularity in the scientific community and many facilities have been migrating towards it, SLAC has developed matpva, a Python interface to integrate EPICS 7 with MATLAB. Matpva utilizes the Python P4P module** and EPICS 7 to offer a robust and reliable interface for MATLAB users that employ EPICS 7. The EPICS 7 PVAccess API allows higher-level scientific applications to get/set/monitor simple and complex structures from an EPICS 7-based control system. Moreover, matpva simplifies the process by handling the data type conversion from Python to MATLAB, making it easier for researchers to focus on their analyses and innovative ideas instead of technical data conversion. By leveraging matpva, researchers can work more efficiently and make discoveries in diverse fields, including particle physics and astronomy.
* See https://epics-controls.org/resources-and-support/base/epics-7/ to learn more about EPICS 7
** Visit https://mdavidsaver.github.io/p4p/ to learn more about the P4P
 
poster icon Poster THSDSC03 [0.865 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THSDSC03  
About • Received ※ 06 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1BCO04 The Controls and Science IT Project for the SLS 2.0 Upgrade controls, network, storage-ring, EPICS 1616
 
  • A. Ashton, H.-H. Braun, S. Fries, X. Yao, E. Zimoch
    PSI, Villigen PSI, Switzerland
 
  Operation of the Swiss Light Source (SLS) at the Paul Scherrer Institue (PSI) in Switzerland began in 2000 and it quickly became one of the most successful synchrotron radiation facilities worldwide, providing academic and industry users with a suite of excellent beamlines covering a wide range of methods and applications. To maintain the SLS at the forefront of synchrotron user facilities and to exploit all of the improvement opportunities, PSI prepared a major upgrade project for SLS, named SLS 2.0. The Controls and Science IT (CaSIT) subproject was established to help instigate a project management structure to facilitate new concepts, increased communication, and clarify budgetary responsibility. This article focusses on the progress being made to exploit the current technological opportunities offered by a break in operations whilst taking into consideration future growth opportunities and realistic operational support within an academic research facility.  
slides icon Slides FR1BCO04 [6.389 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR1BCO04  
About • Received ※ 05 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 20 November 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR2AO01 How Accurate Laser Physics Modeling Is Enabling Nuclear Fusion Ignition Experiments laser, target, optics, software 1620
 
  • K.P. McCandless, R.H. Aden, A. Bhasker, R.T. Deveno, J.-M.G. Di Nicola, M. Erickson, T.E. Lanier, S.A. McLaren, G. Mennerat, F.X. Morrissey, J. Penner, T. Petersen, B.A. Raymond, S.E. Schrauth, M.F. Tam, K. Varadan, L. Waxer
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
This last year we achieved an important milestone by reaching fusion ignition at Lawrence Livermore National Laboratory’s (LLNL) National Ignition Facility (NIF), a multi-decadal effort involving a large collaboration. The NIF facility contains a 192-beam 4.2 MJ neodymium glass laser (around 1053 nm) that is frequency converted to 351 nm light. To meet stringent laser performance required for ignition, laser modeling codes including the Virtual Beamline (VBL) and its predecessors are used as engines of the Laser Operations Performance Model (LPOM). VBL comprises an advanced nonlinear physics model that captures the response of all the NIF laser components (from IR to UV and nJ to MJ) and precisely computes the input beam power profile needed to deliver the desired UV output on target. NIF was built to access the extreme high energy density conditions needed to support the nation’s nuclear stockpile and to study Inertial Confinement Fusion (ICF). The design, operation and future enhancements to this laser system are guided by the VBL physics modeling code which uses best-in-class standards to enable high-resolution simulations on the Laboratory’s high-performance computing platforms. The future of repeated and optimized ignition experiments relies on the ability for the laser system to accurately model and produce desired power profiles at an expanded regime from the laser’s original design criteria.
LLNL Release Number: LLNL-ABS-847846
 
slides icon Slides FR2AO01 [3.580 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2AO01  
About • Received ※ 26 September 2023 — Revised ※ 12 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR2AO02 A Digital Twin for Neutron Instruments simulation, neutron, software, detector 1626
 
  • S. Nourbakhsh, Y. Le Goc, P. Mutti
    ILL, Grenoble, France
 
  Data from virtual experiments are becoming an extremely valuable asset for research infrastructures in a multitude of aspects and different actors: for instrument scientists to develop and optimise current and future instruments; for training external users in the usage of the instrument control system; for scientists in studying, quantifying and reducing instrumental effects on acquired data. Furthermore large sets of simulated data are also a necessary ingredient for the development of surrogate models for faster and more accurate simulation, reduction and analysis of the data. The development of a digital twin of an instrument can answer such different needs with a single unified approach wrapping in a user-friendly envelop the knowledge about the instrument physical description, the specific of the simulation packages and their interaction, and the high performing computing setup. In this article we will present the general architecture of the digital twin prototype developed at the ILL in the framework of the PANOSC European project in close collaboration with other research facilities (ESS and EuXFel). The communication patterns (based on ZQM) and interaction between the control system (NOMAD), simulation software (McStas), instrument description and configuration, process management (CAMEO) will be detailed. The adoption of FAIR principles for data formats and policies in combination with open-source software make it a sustainable project both for development and maintenance in the mid and long-term.  
slides icon Slides FR2AO02 [1.245 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2AO02  
About • Received ※ 31 October 2023 — Revised ※ 02 November 2023 — Accepted ※ 05 December 2023 — Issued ※ 07 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR2BCO03 Taranta Project - Update and Current Status TANGO, controls, database, factory 1657
 
  • Y.L. Li, M. Eguiraun, J. Forsberg, V. Hardion, M. Leorato
    MAX IV Laboratory, Lund University, Lund, Sweden
  • V. Alberti
    INAF-OAT, Trieste, Italy
  • M. Canzari
    INAF - OAAB, Teramo, Italy
  • A. Dubey
    PSL, Pune, India
  • M. Gandor, D.T. Trojanowska
    S2Innovation, Kraków, Poland
  • H.R. Ribeiro
    Universidade do Porto, Faculdade de Ciências, Porto, Portugal
 
  Taranta, developed jointly by MAX IV Laboratory and SKA Observatory, is a web based no-code interface for remote control of instruments at accelerators and other scientific facilities. It has seen a great success in system development and scientific experiment usage. In the past two years, the panel of users has greatly expanded. The first generation of Taranta was not able to handle the challenges introduced by the user cases, notably the decreased performance when a high number of data points are requested, as well as new functionality requests. Therefore, a series of refactoring and performance improvements of Taranta are ongoing, to prepare it for handling large data transmission between Taranta and multiple sources of information, and to provide more possibilities for users to develop their own dashboards. This article presents the status of the Taranta project from the aspects of widgets updates, packages management, optimization of the communication with the backend TangoGQL, as well as the investigation on a new python library compatible with the newest python version for TangoGQL. In addition to the technical improvements, more facilities other than MAX IV and SKAO are considering to join Taranta project. One workshop has been successfully held and there will be more in the future. This article also presents the lesson learned from this project, the road map, and the GUI strategy for the near future.  
slides icon Slides FR2BCO03 [4.759 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2BCO03  
About • Received ※ 06 October 2023 — Accepted ※ 21 November 2023 — Issued ※ 23 November 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)