Keyword: laser
Paper Title Other Keywords Page
MO2BCO02 Concept and Design of an Extensible Middle-Layer Application Framework for Accelerator Operations and Development framework, controls, FEL, software 30
 
  • M. Schütte, J. Georg, A. Grünhagen, H. Schlarb
    DESY, Hamburg, Germany
 
  Data col­lec­tion and analy­sis are be­com­ing in­creas­ingly vital not only for the ex­per­i­ments con­ducted with par­ti­cle ac­cel­er­a­tors but also for their op­er­a­tion, main­te­nance, and de­vel­op­ment. Due to lack of fea­si­ble al­ter­na­tives, ex­perts reg­u­larly re­sort to writ­ing task-spe­cific scripts to per­form ac­tions such as (event trig­gered or tem­po­rary) data col­lec­tion, sys­tem fail­ure de­tec­tion and re­cov­ery, and even sim­ple high-level feed­backs. Often, these scripts are not shared and are deemed to have lit­tle reuse value, giv­ing them a short life­time and caus­ing re­dun­dant work. We re­port on a mod­u­lar Python frame­work for con­struct­ing mid­dle-layer ap­pli­ca­tions from a li­brary of pa­ra­me­ter­ized func­tion­al­ity blocks (mod­ules) by writ­ing a sim­ple con­fig­u­ra­tion file in a hu­man-ori­ented for­mat. This en­cour­ages the cre­ation of main­tain­able and reusable mod­ules while of­fer­ing an in­creas­ingly pow­er­ful and flex­i­ble plat­form that has few re­quire­ments to the user. A core en­gine in­stan­ti­ates the mod­ules ac­cord­ing to the con­fig­u­ra­tion file, col­lects the re­quired data from the con­trol sys­tem and dis­trib­utes it to the in­di­vid­ual mod­ule in­stances for pro­cess­ing. Ad­di­tion­ally, a pub­lisher-sub­scriber mes­sag­ing sys­tem is pro­vided for in­ter-mod­ule com­mu­ni­ca­tion. We dis­cuss ar­chi­tec­ture & de­sign choices, cur­rent state and fu­ture goals of the frame­work as well as real use-case ex­am­ples from the Eu­ro­pean XFEL.  
slides icon Slides MO2BCO02 [1.915 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2BCO02  
About • Received ※ 05 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 30 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3AO05 Path to Ignition at National Ignition Facility (NIF): The Role of the Automated Alignment System alignment, target, controls, operation 138
 
  • B.P. Patel, A.A.S. Awwal, M. Fedorov, R.R. Leach Jr., R.R. Lowe-Webb, V.J. Miller Kamm, P.K. Singh
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The his­tor­i­cal break­through ex­per­i­ment at the Na­tional Ig­ni­tion Fa­cil­ity (NIF) pro­duced fu­sion ig­ni­tion in a lab­o­ra­tory for the first time and made head­lines around the world. This achieve­ment was the re­sult of decades of re­search, thou­sands of peo­ple, and hard­ware and soft­ware sys­tems that ri­valed the com­plex­ity of any­thing built be­fore. The NIF laser Au­to­matic Align­ment (AA) sys­tem has played a major role in this ac­com­plish­ment. Each high yield shot in the NIF laser sys­tem re­quires all 192 laser beams to ar­rive at the tar­get within 30 pi­cosec­onds and be aligned within 50 mi­crons-half the di­am­e­ter of human hair-all with the cor­rect wave­length and en­ergy. AA makes it pos­si­ble to align and fire the 192 NIF laser beams ef­fi­ciently and re­li­ably sev­eral times a day. AA is built on mul­ti­ple lay­ers of com­plex cal­cu­la­tions and al­go­rithms that im­ple­ment data and image analy­sis to po­si­tion op­ti­cal de­vices in the beam path in a highly ac­cu­rate and re­peat­able man­ner through the con­trolled move­ment of about 66,000 con­trol points. The sys­tem was de­signed to have min­i­mum or no human in­ter­ven­tion. This paper will de­scribe AA’s evo­lu­tion, its role in ig­ni­tion, and fu­ture mod­ern­iza­tion.
LLNL Release Number: LLNL-ABS-847783
 
slides icon Slides MO3AO05 [10.417 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO05  
About • Received ※ 22 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 05 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU1BCO04 Laser Focal Position Correction Using FPGA-Based ML Models controls, network, FPGA, simulation 262
 
  • J.A. Einstein-Curtis, S.J. Coleman, N.M. Cook, J.P. Edelen
    RadiaSoft LLC, Boulder, Colorado, USA
  • S.K. Barber, C.E. Berger, J. van Tilborg
    LBNL, Berkeley, California, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC 00259037.
High rep­e­ti­tion-rate, ul­tra­fast laser sys­tems play a crit­i­cal role in a host of mod­ern sci­en­tific and in­dus­trial ap­pli­ca­tions. We pre­sent a di­ag­nos­tic and cor­rec­tion scheme for con­trol­ling and de­ter­min­ing laser focal po­si­tion by uti­liz­ing fast wave­front sen­sor mea­sure­ments from mul­ti­ple po­si­tions to train a focal po­si­tion pre­dic­tor. This pre­dic­tor and ad­di­tional con­trol al­go­rithms have been in­te­grated into a uni­fied con­trol in­ter­face and FPGA-based con­troller on beam­lines at the Bella fa­cil­ity at LBNL. An op­tics sec­tion is ad­justed on­line to pro­vide the de­sired cor­rec­tion to the focal po­si­tion on mil­lisec­ond timescales by de­ter­min­ing cor­rec­tions for an ac­tu­a­tor in a tele­scope sec­tion along the beam­line. Our ini­tial proof-of-prin­ci­ple demon­stra­tions lever­aged pre-com­piled data and pre-trained net­works op­er­at­ing ex-situ from the laser sys­tem. A frame­work for gen­er­at­ing a low-level hard­ware de­scrip­tion of ML-based cor­rec­tion al­go­rithms on FPGA hard­ware was cou­pled di­rectly to the beam­line using the AMD Xil­inx Vitis AI tool­chain in con­junc­tion with de­ploy­ment scripts. Lastly, we con­sider the use of re­mote com­put­ing re­sources, such as the Sirepo sci­en­tific frame­work*, to ac­tively up­date these cor­rec­tion schemes and de­ploy mod­els to a pro­duc­tion en­vi­ron­ment.
* M.S. Rakitin et al., "Sirepo: an open-source cloud-based software interface for X-ray source and optics simulations" Journal of Synchrotron Radiation25, 1877-1892 (Nov 2018).
 
slides icon Slides TU1BCO04 [1.876 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU1BCO04  
About • Received ※ 06 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 18 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2AO02 Textual Analysis of ICALEPCS and IPAC Conference Proceedings: Revealing Research Trends, Topics, and Collaborations for Future Insights and Advanced Search cavity, cryogenics, controls, LLRF 309
 
  • A. Sulc, A. Eichler, T. Wilksen
    DESY, Hamburg, Germany
 
  Funding: This work was supported by HamburgX grant LFF-HHX-03 to the Center for Data and Computing in Natural Sciences (CDCS) from the Hamburg Ministry of Science, Research, Equalities and Districts.
In this paper, we show a tex­tual analy­sis of past ICALEPCS and IPAC con­fer­ence pro­ceed­ings to gain in­sights into the re­search trends and top­ics dis­cussed in the field. We use nat­ural lan­guage pro­cess­ing tech­niques to ex­tract mean­ing­ful in­for­ma­tion from the ab­stracts and pa­pers of past con­fer­ence pro­ceed­ings. We ex­tract top­ics to vi­su­al­ize and iden­tify trends, an­a­lyze their evo­lu­tion to iden­tify emerg­ing re­search di­rec­tions and high­light in­ter­est­ing pub­li­ca­tions based solely on their con­tent with an analy­sis of their net­work. Ad­di­tion­ally, we will pro­vide an ad­vanced search tool to bet­ter search in the ex­ist­ing pa­pers to pre­vent du­pli­ca­tion and eas­ier ref­er­ence find­ings. Our analy­sis pro­vides a com­pre­hen­sive overview of the re­search land­scape in the field and helps re­searchers and prac­ti­tion­ers to bet­ter un­der­stand the state-of-the-art and iden­tify areas for fu­ture re­search.
 
slides icon Slides TU2AO02 [12.762 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU2AO02  
About • Received ※ 30 September 2023 — Revised ※ 11 October 2023 — Accepted ※ 18 November 2023 — Issued ※ 29 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2AO05 Maintenance of the National Ignition Facility Controls Hardware System controls, operation, target, experiment 328
 
  • J.L. Vaher, G.K. Brunton, J. Dixon
    LLNL, Livermore, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
At the Na­tional Ig­ni­tion Fa­cil­ity (NIF), achiev­ing fu­sion ig­ni­tion for the first time ever in a lab­o­ra­tory re­quired one of the most com­plex hard­ware con­trol sys­tems in the world. With ap­prox­i­mately 1,200 con­trol racks, 66,000 con­trol points, and 100, 000 ca­bles, main­tain­ing the NIF con­trol sys­tem re­quires an ex­quis­ite chore­og­ra­phy around ex­per­i­men­tal op­er­a­tions while ad­her­ing to NIF’s safety, se­cu­rity, qual­ity, and ef­fi­ciency re­quire­ments. To en­sure sys­tems op­er­ate at peak per­for­mance and re­main avail­able at all times to avoid costly de­lays, pre­ven­ta­tive main­te­nance ac­tiv­i­ties are per­formed two days per week as the foun­da­tion of our ef­fec­tive main­te­nance strat­egy. Re­ac­tive main­te­nance ad­dresses crit­i­cal path is­sues that im­pact ex­per­i­men­tal op­er­a­tions through a rapid re­sponse 24x7 on-call sup­port team. Pri­or­i­tized work re­quests are re­viewed and ap­proved daily by the fa­cil­ity op­er­a­tions sched­ul­ing team. NIF is now in the sec­ond decade of op­er­a­tions, and the aging of many con­trol sys­tems is threat­en­ing to af­fect per­for­mance and avail­abil­ity, po­ten­tially im­pact­ing planned progress of the fu­sion ig­ni­tion pro­gram. The team is em­bark­ing on a large-scale re­fur­bish­ment of sys­tems to mit­i­gate this threat. Our ro­bust main­te­nance pro­gram will en­sure NIF can cap­i­tal­ize on ig­ni­tion and push the fa­cil­ity to even greater achieve­ments. This paper will de­scribe the processes, pro­ce­dures, and met­rics used to plan, co­or­di­nate, and per­form con­trols hard­ware main­te­nance at NIF.
LLNL Release Number: LLNL-ABS-848420
 
slides icon Slides TU2AO05 [1.938 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU2AO05  
About • Received ※ 03 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO13 Applications of Artificial Intelligence in Laser Accelerator Control System target, controls, simulation, experiment 372
 
  • F.N. Li, K.C. Chen, Z. Guo, Q.Y. He, C. Lin, Q. Wang, Y. Xia, M.X. Zang
    PKU, Beijing, People’s Republic of China
 
  Funding: the National Natural Science Foundation of China (Grants No. 11975037, NO. 61631001 and No. 11921006), and the National Grand Instrument Project (No. 2019YFF01014400 and No. 2019YFF01014404).
Ul­tra-in­tense laser-plasma in­ter­ac­tions can pro­duce TV/m ac­cel­er­a­tion gra­di­ents, mak­ing them promis­ing for com­pact ac­cel­er­a­tors. Peking Uni­ver­sity is con­struct­ing a pro­ton ra­dio­ther­apy sys­tem pro­to­type based on PW laser ac­cel­er­a­tors, but tran­sient processes chal­lenge sta­bil­ity con­trol, crit­i­cal for med­ical ap­pli­ca­tions. This work demon­strates ar­ti­fi­cial in­tel­li­gence’s (AI) ap­pli­ca­tion in laser ac­cel­er­a­tor con­trol sys­tems. To achieve mi­cro-pre­ci­sion align­ment be­tween the ul­tra-in­tense laser and tar­get, we pro­pose an au­to­mated po­si­tion­ing pro­gram using the YOLO al­go­rithm. This real-time method em­ploys a con­vo­lu­tional neural net­work, di­rectly pre­dict­ing ob­ject lo­ca­tions and class prob­a­bil­i­ties from input im­ages. It en­ables pre­cise, au­to­matic solid tar­get align­ment in about a hun­dred mil­lisec­onds, re­duc­ing ex­per­i­men­tal prepa­ra­tion time. The YOLO al­go­rithm is also in­te­grated into the safety in­ter­lock­ing sys­tem for anti-tail­ing, al­low­ing quick emer­gency re­sponse. The in­tel­li­gent con­trol sys­tem also en­ables con­ve­nient, ac­cu­rate beam tun­ing. We de­vel­oped high-per­for­mance vir­tual ac­cel­er­a­tor soft­ware using "OpenXAL" and GPU-ac­cel­er­ated multi-par­ti­cle beam trans­port sim­u­la­tions. The soft­ware al­lows real-time or cus­tom pa­ra­me­ter sim­u­la­tions and fea­tures con­trol in­ter­faces com­pat­i­ble with op­ti­miza­tion al­go­rithms. By de­sign­ing tai­lored ob­jec­tive func­tions, de­sired beam size and dis­tri­b­u­tion can be achieved in a few it­er­a­tions.
 
slides icon Slides TUMBCMO13 [1.162 MB]  
poster icon Poster TUMBCMO13 [1.011 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO13  
About • Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 23 November 2023 — Issued ※ 23 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO23 Development and New Perspectives on the LMJ Power Conditioning Modules software, controls, MMI, experiment 415
 
  • P. Torrent, J-P. Airiau, I. Issury
    CEA, LE BARP cedex, France
 
  The Laser Mega­Joule (LMJ), a 176-beam laser French fa­cil­ity, lo­cated at the CEA* CESTA close to Bor­deaux is part of the French Sim­u­la­tion Pro­gram, for im­prove­ment of the­o­ret­i­cal mod­els, high per­for­mance nu­mer­i­cal sim­u­la­tions and ex­per­i­men­tal val­i­da­tions. It is de­signed to de­liver about 1.4 MJ of en­ergy on tar­gets, for plasma and fu­sion ex­per­i­ments. With 15 bun­dles op­er­a­tional at the end of 2023, the op­er­a­tional ca­pa­bil­i­ties are in­creas­ing grad­u­ally until the full com­ple­tion of the LMJ fa­cil­ity by 2025. With the in­creas­ing of the Power Con­di­tion­ing Mod­ules (PCM), it has been ob­served more and more in­sta­bil­i­ties in the syn­chro­niza­tion and the re­peata­bil­ity of the PCM’s trig­ger­ing. For ex­per­i­ments based on 10 or more bun­dles, it has re­sulted in the issue of cou­pling the LMJ bun­dles with the PETAL laser and in the safety shut­down of the PCM due to the time­out of ca­pac­i­tors under high volt­age. In this paper, a de­scrip­tion of the LMJ PCM is first given. Then, the con­sid­ered prob­lem is pre­sented with a de­tailed analy­sis and the soft­ware so­lu­tion is fi­nally pre­sented with ex­per­i­men­tal re­sults show­ing the gain in the re­li­a­bil­ity and ef­fec­tive­ness of the PCM dur­ing the LMJ-PETAL shots.
* CEA : Commissariat à l Energie Atomique et aux Energies Alternatives
 
slides icon Slides TUMBCMO23 [2.897 MB]  
poster icon Poster TUMBCMO23 [0.941 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO23  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO32 DevPylon, DevVimba: Game Changers at LULI TANGO, controls, device-server, software 441
 
  • S. Marchand, J.M. Bruneau, L. Ennelin, S.M. Minolli, M. Sow
    LULI, Palaiseaux, France
 
  Funding: CNRS, École polytechnique, CEA, Sorbonne Université
Apol­lon, LULI2000 and HERA are three Re­search In­fra­struc­tures of the Cen­tre na­tional de la recherche sci­en­tifique (CNRS), École poly­tech­nique (X), Com­mis­sariat à l’Énergie Atom­ique et aux En­er­gies Al­ter­na­tives (CEA) and Sor­bonne Uni­ver­sity (SU). Past-com­mis­sion­ing phase, Apol­lon is a four beam laser, multi-petawatt laser fa­cil­ity fit­ted with in­stru­men­ta­tion tech­nolo­gies on the cut­ting edge with two ex­per­i­men­tal areas (short–up to 1m–and long focal–up to 20m, 32m in the fu­ture). To mon­i­tor the laser beam char­ac­ter­is­tics through the in­ter­ac­tion cham­bers, more than 500 de­vices are dis­trib­uted in the fa­cil­ity and con­trolled through a Tango bus. This poster fo­cuses on two linked soft­ware com­po­nents: De­vPy­lon and DevVimba. Each af­fected to a type of cam­eras: Basler via PyPy­lon wrap­per in­ter­face of Pylon Soft­ware suite and Prosil­ica via Vimba SDK li­brary, re­spec­tively. These two Tango de­vices are Python scripts con­structed and gen­er­ated via POGO. They offer a spe­cific way to mon­i­tor more than 100 CCD cam­eras in the fa­cil­ity at an image ac­qui­si­tion and dis­play rate up to 10Hz for a max­i­mum of 300-shot at 1-minute rate per day and on an al­ways-ON mode through­out the day.
 
slides icon Slides TUMBCMO32 [1.030 MB]  
poster icon Poster TUMBCMO32 [1.421 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO32  
About • Received ※ 09 October 2023 — Revised ※ 20 November 2023 — Accepted ※ 20 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP010 The Laser Megajoule Facility Status Report target, diagnostics, experiment, controls 498
 
  • I. Issury, J-P. Airiau, Y. Tranquille-Marques
    CEA, LE BARP cedex, France
 
  The Laser Mega­Joule, a 176-beam laser fa­cil­ity de­vel­oped by CEA, is lo­cated near Bor­deaux. It is part of the French Sim­u­la­tion Pro­gram, which com­bines im­prove­ment of the­o­ret­i­cal mod­els used in var­i­ous do­mains of physics and high per­for­mance nu­mer­i­cal sim­u­la­tion. It is de­signed to de­liver about 1.4 MJ of en­ergy on tar­gets, for high en­ergy den­sity physics ex­per­i­ments, in­clud­ing fu­sion ex­per­i­ments. The LMJ tech­no­log­i­cal choices were val­i­dated on the LIL, a scale-1 pro­to­type com­posed of 1 bun­dle of 4-beams. The first bun­dle of 8-beams was com­mis­sioned in Oc­to­ber 2014 with the re­al­i­sa­tion of the first ex­per­i­ment on the LMJ fa­cil­ity. The op­er­a­tional ca­pa­bil­i­ties are in­creas­ing grad­u­ally every year until the full com­ple­tion by 2025. By the end of 2023, 18 bun­dles of 8-beams will be as­sem­bled and 15 bun­dles are ex­pected to be fully op­er­a­tional. In this paper, a pre­sen­ta­tion of the LMJ Con­trol Sys­tem ar­chi­tec­ture is given. A de­scrip­tion of the in­te­gra­tion plat­form and sim­u­la­tion tools, lo­cated out­side the LMJ fa­cil­ity, is given. Fi­nally, a re­view of the LMJ sta­tus re­port is de­tailed with an up­date on the LMJ and PETAL ac­tiv­i­ties.
LMJ: Laser MegaJoule
CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives
LIL : Ligne d’Intégration Laser
 
poster icon Poster TUPDP010 [1.200 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP010  
About • Received ※ 28 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 08 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP011 The Laser Megajoule Full Automated Sequences alignment, controls, target, GUI 504
 
  • Y. Tranquille-Marques, J-P. Airiau, P. Baudon, I. Issury, A. Mugnier
    CEA, LE BARP cedex, France
 
  The LMJ*, a 176-beam laser fa­cil­ity de­vel­oped by the French Nu­clear Sci­ence di­rec­torate CEA, is lo­cated at the CEA** CESTA site near Bor­deaux. The LMJ fa­cil­ity is part of the French Sim­u­la­tion Pro­gram. It is de­signed to de­liver about 1.4 MJ of en­ergy on tar­gets, for high en­ergy den­sity physics ex­per­i­ments, in­clud­ing fu­sion ex­per­i­ments. Since 2022, the LMJ fa­cil­ity aims at car­ry­ing out ex­per­i­ments with 12 bun­dles of 8 laser beams and 12 tar­get di­ag­nos­tics. In order to achieve daily shots in­clud­ing all the prepara­tory steps, the LMJ per­forms night ac­tiv­i­ties from now on and the pres­ence of tech­ni­cal op­er­a­tors is not re­quired. These se­quences work on vac­uum win­dows in­spec­tion and beam align­ment. They take into ac­count all the pre­req­ui­sites for their good per­for­mances and are sched­uled au­to­mat­i­cally one after the other. They deal with ma­te­r­ial se­cu­rity and un­ex­pected equip­ment alarms. They en­deav­our to re­quired tasks suc­cess and give a de­tailed re­port of the night events to the shot di­rec­tor. This paper gives a pre­sen­ta­tion of the two se­quences with so­lu­tions in order to an­swer the tech­ni­cal spec­i­fi­ca­tions and the last en­hance­ments.
*LMJ: Laser MegaJoule
**CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives
 
poster icon Poster TUPDP011 [0.771 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP011  
About • Received ※ 02 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP012 Tango at LULI TANGO, controls, GUI, network 509
 
  • S. Marchand, J.M. Bruneau, L. Ennelin, S.M. Minolli, M. Sow
    LULI, Palaiseaux, France
 
  Funding: CNRS, École polytechnique, CEA, Sorbonne Université
Apol­lon, LULI2000 and HERA are three Re­search In­fra­struc­tures of the Cen­tre na­tional de la recherche sci­en­tifique (CNRS), École poly­tech­nique (X), Com­mis­sariat à l’Énergie Atom­ique et aux En­er­gies Al­ter­na­tives (CEA) and Sor­bonne Uni­ver­sity (SU). Now in past-com­mis­sion­ing phase, Apol­lon is a four beam laser, multi-petawatt laser fa­cil­ity fit­ted with in­stru­men­ta­tion tech­nolo­gies on the cut­ting edge with two ex­per­i­men­tal areas (short–up to 1m–and long focal–up to 20m, 32m in the fu­ture). To mon­i­tor the laser beam char­ac­ter­is­tics through the in­ter­ac­tion cham­bers, more than 300 de­vices are dis­trib­uted in the fa­cil­ity and con­trolled through a Tango bus. This poster pre­sents pri­mar­ily a syn­thetic view of the Apol­lon fa­cil­ity, from net­work to hard­ware and from vir­tual ma­chines to soft­ware under Tango ar­chi­tec­ture. We can here have an overview of the dif­fer­ent types of de­vices which are run­ning on the fa­cil­ity and some GUIs de­vel­oped with the ex­ploita­tion team to in­sure the best pos­si­ble way of run­ning the lasers. While de­vel­op­ments are still cur­rently under work for this fa­cil­ity, up­grad­ing the sys­tems of LULI2000 from one side and HERA from the other side are un­der­way by the Con­trol-Com­mand & Su­per­vi­sion team and would fol­low the same spec­i­fi­ca­tions to offer shared pro­to­cols and knowl­edge.
 
poster icon Poster TUPDP012 [2.267 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP012  
About • Received ※ 12 October 2023 — Revised ※ 09 November 2023 — Accepted ※ 17 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP020 Summary Report on Machine Learning-Based Applications at the Synchrotron Light Source Delta injection, controls, synchrotron, storage-ring 537
 
  • D. Schirmer, S. Khan, A. Radha Krishnan
    DELTA, Dortmund, Germany
 
  In re­cent years, sev­eral con­trol sys­tem ap­pli­ca­tions using ma­chine learn­ing (ML) tech­niques have been de­vel­oped and tested to au­to­mate the con­trol and op­ti­miza­tion of the 1.5 GeV syn­chro­tron ra­di­a­tion source DELTA. These ap­pli­ca­tions cover a wide range of tasks, in­clud­ing elec­tron beam po­si­tion cor­rec­tion, work­ing point con­trol, chro­matic­ity ad­just­ment, in­jec­tion process op­ti­miza­tion, as well as CHG-spec­tra (co­her­ent har­monic gen­er­a­tion) analy­sis. Var­i­ous ma­chine learn­ing tech­niques have been used to im­ple­ment these pro­jects. This re­port pro­vides an overview of these pro­jects, sum­ma­rizes the cur­rent re­sults, and in­di­cates ideas for fu­ture im­prove­ments.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP020  
About • Received ※ 04 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 13 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP083 DAQ System Based on Tango, Sardana and PandABox for Millisecond Time Resolved Experiment at the CoSAXS Beamline of MAX IV Laboratory experiment, controls, detector, TANGO 713
 
  • V. Da Silva, B.N. Ahn, J.P. Alcocer, R. Appio, A. Freitas, M. Lindberg, T.S. Plivelic, A.E. Terry
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  CoSAXS is the Co­her­ent and Small Angle X-ray Scat­ter­ing (SAXS) beam­line placed at the dif­frac­tion-lim­ited 3 GeV stor­age ring at MAX IV Lab­o­ra­tory. The beam­line can de­liver a very high pho­ton flux ~1013 ph/s and it is equipped with state-of-the-art pixel de­tec­tors, suit­able for ex­per­i­ments with a high time-res­o­lu­tion to be per­formed. In this work we pre­sent the up­graded beam­line data ac­qui­si­tion strat­egy for a mil­lisec­ond time-re­solved SAXS/WAXS ex­per­i­ment, using laser light to in­duce tem­per­a­ture jumps or UV-ex­ci­ta­tion with the con­se­quent struc­tural changes on the sys­tem. In gen­eral terms, the beam­line con­trol sys­tem is based on TANGO and built on top of it, Sar­dana pro­vides an ad­vanced scan frame­work. In order to syn­chro­nize the laser light pulse on the sam­ple, the X-ray fast shut­ter open­ing time and the X-ray de­tec­tors read­out, hard­ware trig­gers are used. The im­ple­men­ta­tion is done using Pand­ABox, which gen­er­ates the pulse train for the laser and for all ac­tive ex­per­i­men­tal chan­nels, such as coun­ters and de­tec­tors, in syn­chro­niza­tion with the fast shut­ter open­ing time. Pand­ABox in­te­gra­tion is done with a Sar­dana Trig­ger Gate Con­troller, used to con­fig­ure the pulses pa­ra­me­ters as well to or­ches­trate the hard­ware trig­gers dur­ing a scan. This paper de­scribes the ex­per­i­ment or­ches­tra­tion, laser light syn­chro­niza­tion with mul­ti­ple X-ray de­tec­tor.  
poster icon Poster TUPDP083 [1.645 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP083  
About • Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP088 Labview-Based Template for Enhanced Accelerator Systems Control: Software Solutions for the CERN-ISOLDE Facilities controls, ISOL, software, timing 735
 
  • C. Charrondière, O.O. Andreassen, A. Benoit, E.G. Galetti, R. Heinke, L.L. Le, B.A. Marsh, R.E. Rossel, S. Rothe, S. Sudak
    CERN, Meyrin, Switzerland
  • G.E. Boorman
    Royal Holloway, University of London, Surrey, United Kingdom
 
  ISOLDE is part of the ex­per­i­men­tal in­fra­struc­ture with-in the CERN ac­cel­er­a­tor com­plex that pro­vides ra­dioac-tive ion beams for stud­ies of fun­da­men­tal nu­clear phys-ics, as­tro­physics, con­densed mat­ter physics and med­ical ap­pli­ca­tions. Com­ple­ment­ing the avail­able con­trols in-fras­truc­ture, an easy-to-use set of ap­pli­ca­tions was de­vel-oped to allow op­er­a­tors to record and dis­play sig­nals from mul­ti­ple sources, as well as to pro­vide dri­vers for non-stan­dard, cus­tom-made in­stru­ments and spe­cial­ized off-the-shelf com­po­nents. Aimed not only at soft­ware en­gi­neers but de­vel­op­ers with any back­ground, a generic and mod­u­lar soft­ware tem­plate was de­vel­oped in Lab­VIEW fol­low­ing a col­lab-ora­tion be­tween CERN and AN­GARA Tech­nol­ogy. This uni­fied tem­plate can be ex­tended to sup­port in­ter­ac­tion with any in­stru­ment and any newly de­vel­oped ap­plica-tion can be eas­ily added to the ex­ist­ing con­trol sys­tem and in­te­grated into the CERN con­trol and mon­i­tor­ing in­fra­struc­ture. New mod­ules and in­stru­ment dri­vers are easy to main­tain as the struc­ture and com­mu­ni­ca­tion lay­ers are all de­rived from the same tem­plate and based on the same com­po­nents. In this paper, we will ex­plain the im­ple­men­ta­tion, ar-chi­tec­ture and struc­ture of the tem­plate, as well as a wide va­ri­ety of use cases - from motor con­trol to image ac­quisi-tion and laser-spe­cific equip­ment con­trol. We will also show use cases of ap­pli­ca­tions de­vel­oped and de­ployed within a few days in the ISOLDE fa­cil­ity.  
poster icon Poster TUPDP088 [0.860 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP088  
About • Received ※ 20 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP120 How Embracing a Common Tech Stack Can Improve the Legacy Software Migration Experience software, database, framework, experiment 860
 
  • C.D. Burgoyne, C.R. Albiston, R.G. Beeler, M. Fedorov, J.J. Mello, E.R. Pernice, M. Shor
    LLNL, Livermore, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Over the last sev­eral years, the Na­tional Ig­ni­tion Fa­cil­ity (NIF), the world’s largest and most en­er­getic laser, has reg­u­larly con­ducted ap­prox­i­mately 400 shots per year. Each ex­per­i­ment is de­fined by up to 48 unique pulse shapes, with each pulse shape po­ten­tially hav­ing thou­sands of con­fig­urable data points. The im­por­tance of ac­cu­rately rep­re­sent­ing small changes in pulse shape, il­lus­trated by the his­toric ig­ni­tion ex­per­i­ment in De­cem­ber 2022, high­lights the ne­ces­sity for pulse de­sign­ers at NIF to have ac­cess to ro­bust, easy to use, and ac­cu­rate de­sign soft­ware that can in­te­grate with the ex­ist­ing and fu­ture ecosys­tem of soft­ware at NIF. To de­velop and main­tain this type of com­plex soft­ware, the Shot Data Sys­tems (SDS) group has re­cently em­braced lever­ag­ing a com­mon set of rec­om­mended tech­nolo­gies and frame­works for soft­ware de­vel­op­ment across their suite of ap­pli­ca­tions. This paper will de­tail SDS’s ex­pe­ri­ence mi­grat­ing an ex­ist­ing legacy Java Swing-based pulse shape ed­i­tor into a mod­ern web ap­pli­ca­tion lever­ag­ing tech­nolo­gies rec­om­mended by the com­mon tech stack, in­clud­ing Spring Boot, Type­Script, React and Docker with Ku­ber­netes, as well as dis­cuss how em­brac­ing a com­mon set of tech­nolo­gies in­flu­enced the mi­gra­tion path, im­proved the de­vel­oper ex­pe­ri­ence, and how it will ben­e­fit the ex­ten­si­bil­ity and main­tain­abil­ity of the ap­pli­ca­tion for years to come.
LLNL Release Number: LLNL-ABS-848203
 
poster icon Poster TUPDP120 [0.611 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP120  
About • Received ※ 27 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP121 Conceptual Design of the Matter in Extreme Conditions Upgrade (MEC-U) Rep-Rated Laser Control System controls, timing, EPICS, hardware 865
 
  • B.T. Fishler, F. Batysta, J. Galbraith, V.K. Gopalan, J. Jimenez, L.S. Kiani, E.S. Koh, J.F. McCarrick, A.K. Patel, R.E. Plummer, B. Reagan, E. Sistrunk, T.M. Spinka, K. Terzi, K.M. Velas
    LLNL, Livermore, California, USA
  • M.Y. Cabral, T.A. Wallace, J. Yin
    SLAC, Menlo Park, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The Lawrence Liv­er­more Na­tional Lab­o­ra­tory (LLNL) is de­liv­er­ing the Dual-mode En­er­getic Laser for Plasma and High In­ten­sity Sci­ence (DEL­PHI) sys­tem to SLAC as part of the MEC-U pro­ject to cre­ate an un­prece­dented plat­form for high en­ergy den­sity ex­per­i­ments. The DEL­PHI con­trol sys­tem is re­quired to de­liver short and/or long pulses at a 10 Hz fir­ing rate with femto/pico-sec­ond ac­cu­racy sus­tained over four­teen 12-hour op­er­a­tor shifts to a com­mon shared tar­get cham­ber. The MEC-U sys­tem re­quires the in­te­gra­tion of the con­trol sys­tem with SLAC pro­vided con­trols re­lated to per­son­nel safety, ma­chine safety, pre­ci­sion tim­ing, data analy­sis and vi­su­al­iza­tion, amongst oth­ers. To meet these needs along with the sys­tem’s re­li­a­bil­ity, avail­abil­ity, and main­tain­abil­ity re­quire­ments, LLNL is de­liv­er­ing an EPICS based con­trol sys­tem lever­ag­ing proven SLAC tech­nol­ogy. This talk pre­sents the con­cep­tual de­sign of the DEL­PHI con­trol sys­tem and the meth­ods planned to en­sure its suc­cess­ful com­mis­sion­ing and de­liv­ery to SLAC.
 
poster icon Poster TUPDP121 [1.610 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP121  
About • Received ※ 02 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP139 The Pointing Stabilization Algorithm for the Coherent Electron Cooling Laser Transport at RHIC operation, gun, electron, controls 913
 
  • L.K. Nguyen
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Co­her­ent elec­tron cool­ing (CeC) is a novel cool­ing tech­nique being stud­ied in the Rel­a­tivis­tic Heavy Ion Col­lider (RHIC) as a can­di­date for strong hadron cool­ing in the Elec­tron-Ion Col­lider (EIC). The elec­tron beam used for cool­ing is gen­er­ated by laser light il­lu­mi­nat­ing a pho­to­cath­ode after that light has trav­eled ap­prox­i­mately 40 m from the laser out­put. This prop­a­ga­tion is fa­cil­i­tated by three in­de­pen­dent op­ti­cal ta­bles that move rel­a­tive to one an­other in re­sponse to changes in time of day, weather, and sea­son. The align­ment drifts in­duced by these en­vi­ron­men­tal changes, if left un­cor­rected, even­tu­ally ren­der the elec­tron beam use­less for cool­ing. They are there­fore mit­i­gated by an ac­tive "slow" point­ing sta­bi­liza­tion sys­tem found along the length of the trans­port, copied from the sys­tem that trans­versely sta­bi­lized the Low En­ergy RHIC elec­tron Cool­ing (LEReC) laser beam dur­ing the 2020 and 2021 RHIC runs. How­ever, the sys­tem-spe­cific op­ti­cal con­fig­u­ra­tion and laser op­er­at­ing con­di­tions of the CeC ex­per­i­ment re­quired an adapted al­go­rithm to ad­dress in­ad­e­quate beam po­si­tion data and achieve greater dy­namic range. The re­sult­ing al­go­rithm was suc­cess­fully demon­strated dur­ing the 2022 run of the CeC ex­per­i­ment and will con­tinue to sta­bi­lize the laser trans­port for the up­com­ing run. A sum­mary of the al­go­rithm is pro­vided.
 
poster icon Poster TUPDP139 [2.129 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP139  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 08 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1BCO07 The LCLS-II Precision Timing Control System timing, EPICS, controls, interface 966
 
  • T.K. Johnson, M.C. Browne, C.B. Pino
    SLAC, Menlo Park, California, USA
 
  The LCLS-II pre­ci­sion tim­ing sys­tem is re­spon­si­ble for the syn­chro­niza­tion of op­ti­cal lasers with the LCLS-II XFEL. The sys­tem uses both RF and op­ti­cal ref­er­ences for syn­chro­niza­tion. In con­trast to pre­vi­ous sys­tems used at LCLS the op­ti­cal lasers are shared re­sources, and must be man­aged dur­ing op­er­a­tions. The tim­ing sys­tem con­sists of three pri­mary func­tion­al­i­ties: RF ref­er­ence dis­tri­b­u­tion, op­ti­cal ref­er­ence dis­tri­b­u­tion, and a phase-locked loop (PLL). This PLL may use ei­ther the RF or the op­ti­cal ref­er­ence as a feed­back source. The RF al­lows for phase com­par­isons over a rel­a­tively wide range, al­beit with lim­ited res­o­lu­tion, while the op­ti­cal ref­er­ence en­ables very fine phase com­par­i­son (down to at­tosec­onds), but with lim­ited op­er­a­tional range. These sys­tems must be man­aged using high lev­els of au­toma­tion. Much of this au­toma­tion is done via high-level ap­pli­ca­tions de­vel­oped in EPICS. The beam­line users are pre­sented with rel­a­tively sim­ple in­ter­faces that stream­line op­er­a­tion and ab­stract much of the sys­tem com­plex­ity away. The sys­tem pro­vides both PyDM GUIs as well as python in­ter­faces to en­able time delay scan­ning in the LCLS-II DAQ.  
slides icon Slides WE1BCO07 [3.734 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE1BCO07  
About • Received ※ 06 November 2023 — Revised ※ 09 November 2023 — Accepted ※ 14 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO02 In the Midst of Fusion Ignition: A Look at the State of the National Ignition Facility Control and Information Systems controls, experiment, target, optics 973
 
  • M. Fedorov, A.I. Barnes, L. Beaulac, A.D. Casey, J.R. Castro Morales, J. Dixon, C.M. Estes, M.S. Flegel, V.K. Gopalan, S. Heerey, R. Lacuata, V.J. Miller Kamm, B.P. Patel, M. Paul, N.I. Spafford, J.L. Vaher
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The Na­tional Ig­ni­tion Fa­cil­ity (NIF) is the world’s largest and most en­er­getic 192-laser-beam sys­tem which con­ducts ex­per­i­ments in High En­ergy Den­sity (HED) physics and In­er­tial Con­fine­ment Fu­sion (ICF). In De­cem­ber 2022, the NIF achieved a sci­en­tific break­through when, for the first time ever, the ICF ig­ni­tion oc­curred under lab­o­ra­tory con­di­tions. The key to the NIF’s ex­per­i­men­tal prowess and ver­sa­til­ity is not only its power but also its pre­cise con­trol. The NIF con­trols and data sys­tems place the ex­per­i­menter in full com­mand of the laser and tar­get di­ag­nos­tics ca­pa­bil­i­ties. The re­cently up­graded Mas­ter Os­cil­la­tor Room (MOR) sys­tem pre­cisely shapes NIF laser pulses in the tem­po­ral, spa­tial, and spec­tral do­mains. Apart from the pri­mary 10-me­ter spher­i­cal tar­get cham­ber, the NIF laser beams can now be di­rected to­wards two more ex­per­i­men­tal sta­tions to study laser in­ter­ac­tions with op­tics and large full beam tar­gets. The NIF’s wide range of tar­get di­ag­nos­tics con­tin­ues to ex­pand with new tools to probe and cap­ture com­plex plasma phe­nom­ena using x-rays, gamma-rays, neu­trons, and ac­cel­er­ated pro­tons. While the in­creas­ing neu­tron yields mark the NIF’s steady progress to­wards ex­cit­ing ex­per­i­men­tal regimes, they also re­quire new mit­i­ga­tions for ra­di­a­tion dam­age in con­trol and di­ag­nos­tic elec­tron­ics. With many NIF com­po­nents ap­proach­ing 20 years of age, a Sus­tain­ment Plan is now un­der­way to mod­ern­ize NIF, in­clud­ing con­trols and in­for­ma­tion sys­tems, to as­sure NIF op­er­a­tions through 2040.
LLNL Release Number: LLNL-ABS-847574
 
slides icon Slides WE2BCO02 [4.213 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO02  
About • Received ※ 02 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO03 Data Management for Tracking Optic Lifetimes at the National Ignition Facility optics, database, site, status 1012
 
  • R.D. Clark, L.M. Kegelmeyer
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The Na­tional Ig­ni­tion Fa­cil­ity (NIF), the most en­er­getic laser in the world, em­ploys over 9000 op­tics to re­shape, am­plify, redi­rect, smooth, focus, and con­vert the wave­length of laser light as it trav­els along 192 beam­lines. Un­der­ly­ing the man­age­ment of these op­tics is an ex­ten­sive Or­a­cle data­base stor­ing de­tails of the en­tire life of each optic from the time it leaves the ven­dor to the time it is re­tired. This jour­ney in­cludes test­ing and ver­i­fi­ca­tion, prepar­ing, in­stalling, mon­i­tor­ing, re­mov­ing, and in some cases re­pair­ing and re-us­ing the op­tics. This talk will ad­dress data struc­tures and processes that en­able stor­ing in­for­ma­tion about each step like iden­ti­fy­ing where an optic is in its life­cy­cle and track­ing dam­age through time. We will de­scribe tools for re­port­ing sta­tus and en­abling key de­ci­sions like which dam­age sites should be blocked or re­paired and which op­tics ex­changed. Man­ag­ing re­la­tional in­for­ma­tion and en­sur­ing its in­tegrity is key to man­ag­ing the sta­tus and in­ven­tory of op­tics for NIF.
LLNL Release Number: LLNL-ABS-847598
 
slides icon Slides WE3BCO03 [2.379 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO03  
About • Received ※ 26 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3AO02 High Fidelity Pulse Shaping for the National Ignition Facility experiment, target, diagnostics, timing 1058
 
  • A.S. Gowda, A.I. Barnes, B.W. Buckley, A. Calonico-Soto, E.J. Carr, J.T. Chou, P.T. Devore, J.-M.G. Di Nicola, V.K. Gopalan, J. Heebner, V.J. Hernandez, R.D. Muir, A. Pao, L. Pelz, L. Wang, A.T. Wargo
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The Na­tional Ig­ni­tion Fa­cil­ity (NIF) is the world’s most en­er­getic laser ca­pa­ble of de­liv­er­ing 2.05MJ of en­ergy with peak pow­ers up to 500 ter­awatts on tar­gets a few mms in di­am­e­ter. This en­ables ex­treme con­di­tions in tem­per­a­ture and pres­sure al­low­ing a wide va­ri­ety of ex­ploratory ex­per­i­ments from trig­ger­ing fu­sion ig­ni­tion to em­u­lat­ing tem­per­a­tures at the cen­ter of stars or pres­sures at the cen­ter of giant plan­ets. The ca­pa­bil­ity en­abled the ground­break­ing re­sults of De­cem­ber 5th, 2022 when sci­en­tific breakeven in fu­sion was demon­strated with a tar­get gain of 1.5. A key as­pect of sup­port­ing var­i­ous ex­per­i­ments at NIF is the abil­ity to cus­tom shape the pulses of the 48 quads in­de­pen­dently with high fi­delity as needed by the ex­per­i­men­tal­ists. For more than 15 years, the Mas­ter Os­cil­la­tor Room’s (MOR) pulse shap­ing sys­tem has served NIF well. How­ever, a pulse shap­ing sys­tem that would pro­vide higher shot-to-shot sta­bil­ity, bet­ter power bal­ance and ac­cu­racy across the 192 beams is re­quired for fu­ture NIF ex­per­i­ments in­clud­ing ig­ni­tion. The pulse shapes re­quested vary dras­ti­cally at NIF which led to chal­leng­ing re­quire­ments for the hard­ware, tim­ing and closed loop shap­ing sys­tems. In the past two years, a High-Fi­delity Pulse Shap­ing Sys­tem was de­signed, and a proof-of-con­cept sys­tem was shown to meet all re­quire­ments. This talk will dis­cuss de­sign chal­lenges, so­lu­tions and how mod­ern­iza­tion of the pulse shap­ing hard­ware helped sim­ple con­trol al­go­rithms meet the strin­gent re­quire­ments set by the ex­per­i­men­tal­ists.
LLNL Release Number: LLNL-ABS-848060
 
slides icon Slides WE3AO02 [6.678 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3AO02  
About • Received ※ 04 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1BCO02 Development of Laser Accelerator Control System Based on EPICS controls, EPICS, operation, proton 1093
 
  • Y. Xia, K.C. Chen, L.W. Feng, Z. Guo, Q.Y. He, F.N. Li, C. Lin, Q. Wang, X.Q. Yan, M.X. Zang, J. Zhao
    PKU, Beijing, People’s Republic of China
  • J. Zhao
    Peking University, Beijing, Haidian District, People’s Republic of China
 
  Funding: State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China;
China’s Min­istry of Sci­ence and Tech­nol­ogy sup­ports Peking Uni­ver­sity in con­struct­ing a pro­ton ra­dio­ther­apy de­vice based on a petawatt (PW) laser ac­cel­er­a­tor. The con­trol sys­tem’s func­tion­al­ity and per­for­mance are vital for the ac­cel­er­a­tor’s re­li­a­bil­ity, sta­bil­ity, and ef­fi­ciency. The PW laser ac­cel­er­a­tor con­trol sys­tem has a three-layer dis­trib­uted ar­chi­tec­ture, in­clud­ing de­vice con­trol, front-end (input/out­put) con­trol and cen­tral con­trol (data man­age­ment, and hu­man-ma­chine in­ter­face) lay­ers. The soft­ware plat­form pri­mar­ily uses EPICS, sup­ple­mented by PLC, Python, and Java, while the hard­ware plat­form com­prises in­dus­trial con­trol com­put­ers, servers, and pri­vate cloud con­fig­u­ra­tions. The con­trol sys­tem in­cor­po­rates var­i­ous sub­sys­tems that man­age the laser, tar­get field, beam­line, safety in­ter­locks, con­di­tions, syn­chro­niza­tion, and func­tion­al­i­ties re­lated to data stor­age, dis­play, and more. This paper pre­sents a con­trol sys­tem im­ple­men­ta­tion suit­able for laser ac­cel­er­a­tors, pro­vid­ing valu­able in­sights for fu­ture laser ac­cel­er­a­tor con­trol sys­tem de­vel­op­ment.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH1BCO02  
About • Received ※ 04 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO32 Robotic Process Automation: on the Continuity of Applications Development at SOLEIL PLC, injection, electron, synchrotron 1275
 
  • L.E. Munoz, Y.-M. Abiven, M.-E. Couprie, A. Noureddine, J. Perez, A. Thureau, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL is cur­rently in the Tech­ni­cal De­sign Re­port (TDR) phase of a major up­grade of the fa­cil­ity. In its dig­i­tal trans­for­ma­tion, the de­vel­op­ment of processes and sys­tems with a high de­gree of au­ton­omy is at the cen­ter of the SOLEIL II pro­ject. One of the im­por­tant com­po­nents used to achieve a high de­gree of au­ton­omy is the use of 6-axis ro­botic arms. Thus, in re­cent years, SOLEIL has de­vel­oped and put into op­er­a­tion ro­botic ap­pli­ca­tions to au­to­mate some processes of its beam­lines and some processes of mag­netic mea­sure­ments of the in­ser­tion de­vices. The last year SOLEIL has been de­vel­op­ing two new ro­botic ap­pli­ca­tions, hav­ing thus con­ti­nu­ity in the de­vel­op­ment of ap­pli­ca­tions using its ro­botic stan­dard. This paper de­scribes these two new ap­pli­ca­tions that being de­vel­oped to au­to­mate the in­jec­tion of liq­uid sam­ples for BioSAXS ex­per­i­ments at the SWING beam­line and to au­to­mate the me­chan­i­cal and mag­netic ad­just­ment of the mod­ules that com­pose an in­ser­tion de­vice.  
slides icon Slides THMBCMO32 [17.856 MB]  
poster icon Poster THMBCMO32 [1.484 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO32  
About • Received ※ 05 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 22 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP012 Evolution of the Laser Megajoule Timing System timing, diagnostics, experiment, target 1312
 
  • T. Somerlinck
    CEA, LE BARP cedex, France
  • S. Hocquet, D. Monnier-Bourdin
    Greenfield Technology, Massy, France
 
  The Laser Mega­Joule (LMJ), a 176-beam laser fa­cil­ity de­vel­oped by CEA, is lo­cated at the CEA CESTA site near Bor­deaux. The LMJ fa­cil­ity is part of the French Sim­u­la­tion Pro­gram, which com­bines im­prove­ment of the­o­ret­i­cal mod­els and data used in var­i­ous fields of physics, high per­for­mance nu­mer­i­cal sim­u­la­tions and ex­per­i­men­tal val­i­da­tion. It is de­signed to de­liver about 1.4 MJ of en­ergy on tar­gets, for high en­ergy den­sity physics ex­per­i­ments, in­clud­ing fu­sion ex­per­i­ments. With 120 op­er­a­tional beams at the end of 2023, op­er­a­tional ca­pa­bil­i­ties are grad­u­ally in­creas­ing until the full com­ple­tion of the LMJ fa­cil­ity by 2025. To ver­ify the syn­chro­niza­tion of the pre­cise delay gen­er­a­tors, used on each bun­dle, a new tim­ing di­ag­nos­tic has been de­signed to ob­serve the 1w and 3w fidu­cial sig­nals. Mean­while, due to elec­tronic ob­so­les­cence, a new mod­i­fied pro­to­type pre­cise of a delay gen­er­a­tor, with ’new and old chan­nels’, has been tested and com­pared. In this paper, a re­view of the LMJ syn­chro­niza­tion re­port is given with a de­scrip­tion of the first tim­ing di­ag­nos­tic as well as an overview of the LMJ delay gen­er­a­tor ob­so­les­cence up­date. It also pre­sents some leads for a fu­ture tim­ing sys­tem.
LMJ: Laser MegaJoule
CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives
 
poster icon Poster THPDP012 [3.535 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP012  
About • Received ※ 10 October 2023 — Revised ※ 14 November 2023 — Accepted ※ 19 December 2023 — Issued ※ 21 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP031 Development of Beam Gate System Using the White Rabbit at SuperKEKB kicker, controls, operation, septum 1381
 
  • F. Ito, H. Kaji
    KEK, Ibaraki, Japan
  • Y. Iitsuka
    EJIT, Hitachi, Ibaraki, Japan
 
  Cur­rently, Su­perKEK has net­work-based sys­tems such as trig­ger de­liv­ery, bucket se­lec­tion, abort sys­tem, beam per­mis­sion, and dis­trib­uted DAQ, all of which are op­er­ated as sep­a­rate sys­tems. The White Rab­bit (WR) has ex­tra­or­di­nary multi-func­tion­al­ity when com­bined with the mod­ules al­ready de­vel­oped, so it is pos­si­ble that in the fu­ture all sys­tems could be op­er­ated in a WR net­work. This would lead to a re­duc­tion in human, time, and fi­nan­cial costs. We con­structed a beam gate, which is a part of the beam per­mis­sion sys­tem, on a trial basis using WR. These trig­ger de­liv­er­ies need to be in­ter­locked. The trig­ger de­liv­ery to the elec­tron gun has a spec­i­fi­ca­tion that the next trig­ger de­liv­ery is turned ON/OFF after re­ceiv­ing the ON/OFF sig­nal at any given tim­ing. For the above rea­sons, the delay time from the re­ceipt of the ON/OFF sig­nal from the elec­tron gun is not a fixed value, mak­ing it dif­fi­cult to in­ter­lock with the trig­ger de­liv­ery of other de­vices. By turn­ing on/off the trig­ger de­liv­ery using a pre­cisely time-syn­chro­nized WR, the ON/OFF of the trig­ger de­liv­ery of all de­vices could be cor­rectly in­ter­locked.  
poster icon Poster THPDP031 [0.529 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP031  
About • Received ※ 09 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 18 December 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP052 Characterizing Motion Control Systems to Enable Accurate Continuous and Event-Based Scans controls, PLC, neutron, timing 1431
 
  • J.E. Petersson, T. Bögershausen, N. Holmberg, M. Olsson, T.S. Richter, F. Rojas
    ESS, Lund, Sweden
 
  The Eu­ro­pean Spal­la­tion Source (ESS) is adopt­ing in­no­v­a­tive data ac­qui­si­tion and analy­sis meth­ods using global time­stamp­ing for neu­tron scat­ter­ing re­search. This study char­ac­terises the tim­ing ac­cu­racy and re­li­a­bil­ity of the in­stru­ment con­trol sys­tem by ex­am­in­ing an in­te­grated mo­tion and fast de­tec­tion sys­tem. We de­signed an ex­per­i­men­tal ap­pa­ra­tus fea­tur­ing a mo­tion axis con­trolled by a Beck­hoff pro­gram­ma­ble logic con­troller (PLC) using Twin­CAT 3 soft­ware. The en­coder read­back is time­stamped in the PLC, which is time-syn­chro­nised with the ESS mas­ter clock via a Mi­crore­search Fin­land event re­ceiver (EVR) using Pre­ci­sion Time Pro­to­col (PTP). We re­peat­edly scanned the motor be­tween known po­si­tions at dif­fer­ent speeds. The sys­tem was char­ac­terised by cor­re­lat­ing the po­si­tion and time­stamp recorded by the PLC with in­de­pen­dent in­for­ma­tion using a fast op­ti­cal po­si­tion sen­sor read out di­rectly by the MRF sys­tem. The find­ings of this study pro­vide a good bench­mark for the up­com­ing ex­per­i­ments in neu­tron scat­ter­ing re­search at ESS and should be in­ter­est­ing for those aim­ing to build sim­i­lar se­tups.  
poster icon Poster THPDP052 [1.185 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP052  
About • Received ※ 05 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR2AO01 How Accurate Laser Physics Modeling Is Enabling Nuclear Fusion Ignition Experiments target, experiment, optics, software 1620
 
  • K.P. McCandless, R.H. Aden, A. Bhasker, R.T. Deveno, J.-M.G. Di Nicola, M. Erickson, T.E. Lanier, S.A. McLaren, G. Mennerat, F.X. Morrissey, J. Penner, T. Petersen, B.A. Raymond, S.E. Schrauth, M.F. Tam, K. Varadan, L. Waxer
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
This last year we achieved an im­por­tant mile­stone by reach­ing fu­sion ig­ni­tion at Lawrence Liv­er­more Na­tional Lab­o­ra­tory’s (LLNL) Na­tional Ig­ni­tion Fa­cil­ity (NIF), a multi-decadal ef­fort in­volv­ing a large col­lab­o­ra­tion. The NIF fa­cil­ity con­tains a 192-beam 4.2 MJ neodymium glass laser (around 1053 nm) that is fre­quency con­verted to 351 nm light. To meet strin­gent laser per­for­mance re­quired for ig­ni­tion, laser mod­el­ing codes in­clud­ing the Vir­tual Beam­line (VBL) and its pre­de­ces­sors are used as en­gines of the Laser Op­er­a­tions Per­for­mance Model (LPOM). VBL com­prises an ad­vanced non­lin­ear physics model that cap­tures the re­sponse of all the NIF laser com­po­nents (from IR to UV and nJ to MJ) and pre­cisely com­putes the input beam power pro­file needed to de­liver the de­sired UV out­put on tar­get. NIF was built to ac­cess the ex­treme high en­ergy den­sity con­di­tions needed to sup­port the na­tion’s nu­clear stock­pile and to study In­er­tial Con­fine­ment Fu­sion (ICF). The de­sign, op­er­a­tion and fu­ture en­hance­ments to this laser sys­tem are guided by the VBL physics mod­el­ing code which uses best-in-class stan­dards to en­able high-res­o­lu­tion sim­u­la­tions on the Lab­o­ra­tory’s high-per­for­mance com­put­ing plat­forms. The fu­ture of re­peated and op­ti­mized ig­ni­tion ex­per­i­ments re­lies on the abil­ity for the laser sys­tem to ac­cu­rately model and pro­duce de­sired power pro­files at an ex­panded regime from the laser’s orig­i­nal de­sign cri­te­ria.
LLNL Release Number: LLNL-ABS-847846
 
slides icon Slides FR2AO01 [3.580 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2AO01  
About • Received ※ 26 September 2023 — Revised ※ 12 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)