Paper | Title | Other Keywords | Page |
---|---|---|---|
MO2BCO02 | Concept and Design of an Extensible Middle-Layer Application Framework for Accelerator Operations and Development | framework, controls, FEL, software | 30 |
|
|||
Data collection and analysis are becoming increasingly vital not only for the experiments conducted with particle accelerators but also for their operation, maintenance, and development. Due to lack of feasible alternatives, experts regularly resort to writing task-specific scripts to perform actions such as (event triggered or temporary) data collection, system failure detection and recovery, and even simple high-level feedbacks. Often, these scripts are not shared and are deemed to have little reuse value, giving them a short lifetime and causing redundant work. We report on a modular Python framework for constructing middle-layer applications from a library of parameterized functionality blocks (modules) by writing a simple configuration file in a human-oriented format. This encourages the creation of maintainable and reusable modules while offering an increasingly powerful and flexible platform that has few requirements to the user. A core engine instantiates the modules according to the configuration file, collects the required data from the control system and distributes it to the individual module instances for processing. Additionally, a publisher-subscriber messaging system is provided for inter-module communication. We discuss architecture & design choices, current state and future goals of the framework as well as real use-case examples from the European XFEL. | |||
Slides MO2BCO02 [1.915 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2BCO02 | ||
About • | Received ※ 05 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 30 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MO3AO05 | Path to Ignition at National Ignition Facility (NIF): The Role of the Automated Alignment System | alignment, target, controls, operation | 138 |
|
|||
Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 The historical breakthrough experiment at the National Ignition Facility (NIF) produced fusion ignition in a laboratory for the first time and made headlines around the world. This achievement was the result of decades of research, thousands of people, and hardware and software systems that rivaled the complexity of anything built before. The NIF laser Automatic Alignment (AA) system has played a major role in this accomplishment. Each high yield shot in the NIF laser system requires all 192 laser beams to arrive at the target within 30 picoseconds and be aligned within 50 microns-half the diameter of human hair-all with the correct wavelength and energy. AA makes it possible to align and fire the 192 NIF laser beams efficiently and reliably several times a day. AA is built on multiple layers of complex calculations and algorithms that implement data and image analysis to position optical devices in the beam path in a highly accurate and repeatable manner through the controlled movement of about 66,000 control points. The system was designed to have minimum or no human intervention. This paper will describe AA’s evolution, its role in ignition, and future modernization. LLNL Release Number: LLNL-ABS-847783 |
|||
Slides MO3AO05 [10.417 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO05 | ||
About • | Received ※ 22 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 05 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TU1BCO04 | Laser Focal Position Correction Using FPGA-Based ML Models | controls, network, FPGA, simulation | 262 |
|
|||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC 00259037. High repetition-rate, ultrafast laser systems play a critical role in a host of modern scientific and industrial applications. We present a diagnostic and correction scheme for controlling and determining laser focal position by utilizing fast wavefront sensor measurements from multiple positions to train a focal position predictor. This predictor and additional control algorithms have been integrated into a unified control interface and FPGA-based controller on beamlines at the Bella facility at LBNL. An optics section is adjusted online to provide the desired correction to the focal position on millisecond timescales by determining corrections for an actuator in a telescope section along the beamline. Our initial proof-of-principle demonstrations leveraged pre-compiled data and pre-trained networks operating ex-situ from the laser system. A framework for generating a low-level hardware description of ML-based correction algorithms on FPGA hardware was coupled directly to the beamline using the AMD Xilinx Vitis AI toolchain in conjunction with deployment scripts. Lastly, we consider the use of remote computing resources, such as the Sirepo scientific framework*, to actively update these correction schemes and deploy models to a production environment. * M.S. Rakitin et al., "Sirepo: an open-source cloud-based software interface for X-ray source and optics simulations" Journal of Synchrotron Radiation25, 1877-1892 (Nov 2018). |
|||
Slides TU1BCO04 [1.876 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU1BCO04 | ||
About • | Received ※ 06 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 18 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TU2AO02 | Textual Analysis of ICALEPCS and IPAC Conference Proceedings: Revealing Research Trends, Topics, and Collaborations for Future Insights and Advanced Search | cavity, cryogenics, controls, LLRF | 309 |
|
|||
Funding: This work was supported by HamburgX grant LFF-HHX-03 to the Center for Data and Computing in Natural Sciences (CDCS) from the Hamburg Ministry of Science, Research, Equalities and Districts. In this paper, we show a textual analysis of past ICALEPCS and IPAC conference proceedings to gain insights into the research trends and topics discussed in the field. We use natural language processing techniques to extract meaningful information from the abstracts and papers of past conference proceedings. We extract topics to visualize and identify trends, analyze their evolution to identify emerging research directions and highlight interesting publications based solely on their content with an analysis of their network. Additionally, we will provide an advanced search tool to better search in the existing papers to prevent duplication and easier reference findings. Our analysis provides a comprehensive overview of the research landscape in the field and helps researchers and practitioners to better understand the state-of-the-art and identify areas for future research. |
|||
Slides TU2AO02 [12.762 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU2AO02 | ||
About • | Received ※ 30 September 2023 — Revised ※ 11 October 2023 — Accepted ※ 18 November 2023 — Issued ※ 29 November 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TU2AO05 | Maintenance of the National Ignition Facility Controls Hardware System | controls, operation, target, experiment | 328 |
|
|||
Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. At the National Ignition Facility (NIF), achieving fusion ignition for the first time ever in a laboratory required one of the most complex hardware control systems in the world. With approximately 1,200 control racks, 66,000 control points, and 100, 000 cables, maintaining the NIF control system requires an exquisite choreography around experimental operations while adhering to NIF’s safety, security, quality, and efficiency requirements. To ensure systems operate at peak performance and remain available at all times to avoid costly delays, preventative maintenance activities are performed two days per week as the foundation of our effective maintenance strategy. Reactive maintenance addresses critical path issues that impact experimental operations through a rapid response 24x7 on-call support team. Prioritized work requests are reviewed and approved daily by the facility operations scheduling team. NIF is now in the second decade of operations, and the aging of many control systems is threatening to affect performance and availability, potentially impacting planned progress of the fusion ignition program. The team is embarking on a large-scale refurbishment of systems to mitigate this threat. Our robust maintenance program will ensure NIF can capitalize on ignition and push the facility to even greater achievements. This paper will describe the processes, procedures, and metrics used to plan, coordinate, and perform controls hardware maintenance at NIF. LLNL Release Number: LLNL-ABS-848420 |
|||
Slides TU2AO05 [1.938 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU2AO05 | ||
About • | Received ※ 03 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUMBCMO13 | Applications of Artificial Intelligence in Laser Accelerator Control System | target, controls, simulation, experiment | 372 |
|
|||
Funding: the National Natural Science Foundation of China (Grants No. 11975037, NO. 61631001 and No. 11921006), and the National Grand Instrument Project (No. 2019YFF01014400 and No. 2019YFF01014404). Ultra-intense laser-plasma interactions can produce TV/m acceleration gradients, making them promising for compact accelerators. Peking University is constructing a proton radiotherapy system prototype based on PW laser accelerators, but transient processes challenge stability control, critical for medical applications. This work demonstrates artificial intelligence’s (AI) application in laser accelerator control systems. To achieve micro-precision alignment between the ultra-intense laser and target, we propose an automated positioning program using the YOLO algorithm. This real-time method employs a convolutional neural network, directly predicting object locations and class probabilities from input images. It enables precise, automatic solid target alignment in about a hundred milliseconds, reducing experimental preparation time. The YOLO algorithm is also integrated into the safety interlocking system for anti-tailing, allowing quick emergency response. The intelligent control system also enables convenient, accurate beam tuning. We developed high-performance virtual accelerator software using "OpenXAL" and GPU-accelerated multi-particle beam transport simulations. The software allows real-time or custom parameter simulations and features control interfaces compatible with optimization algorithms. By designing tailored objective functions, desired beam size and distribution can be achieved in a few iterations. |
|||
Slides TUMBCMO13 [1.162 MB] | |||
Poster TUMBCMO13 [1.011 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO13 | ||
About • | Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 23 November 2023 — Issued ※ 23 November 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUMBCMO23 | Development and New Perspectives on the LMJ Power Conditioning Modules | software, controls, MMI, experiment | 415 |
|
|||
The Laser MegaJoule (LMJ), a 176-beam laser French facility, located at the CEA* CESTA close to Bordeaux is part of the French Simulation Program, for improvement of theoretical models, high performance numerical simulations and experimental validations. It is designed to deliver about 1.4 MJ of energy on targets, for plasma and fusion experiments. With 15 bundles operational at the end of 2023, the operational capabilities are increasing gradually until the full completion of the LMJ facility by 2025. With the increasing of the Power Conditioning Modules (PCM), it has been observed more and more instabilities in the synchronization and the repeatability of the PCM’s triggering. For experiments based on 10 or more bundles, it has resulted in the issue of coupling the LMJ bundles with the PETAL laser and in the safety shutdown of the PCM due to the timeout of capacitors under high voltage. In this paper, a description of the LMJ PCM is first given. Then, the considered problem is presented with a detailed analysis and the software solution is finally presented with experimental results showing the gain in the reliability and effectiveness of the PCM during the LMJ-PETAL shots.
* CEA : Commissariat à l Energie Atomique et aux Energies Alternatives |
|||
Slides TUMBCMO23 [2.897 MB] | |||
Poster TUMBCMO23 [0.941 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO23 | ||
About • | Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 09 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUMBCMO32 | DevPylon, DevVimba: Game Changers at LULI | TANGO, controls, device-server, software | 441 |
|
|||
Funding: CNRS, École polytechnique, CEA, Sorbonne Université Apollon, LULI2000 and HERA are three Research Infrastructures of the Centre national de la recherche scientifique (CNRS), École polytechnique (X), Commissariat à l’Énergie Atomique et aux Energies Alternatives (CEA) and Sorbonne University (SU). Past-commissioning phase, Apollon is a four beam laser, multi-petawatt laser facility fitted with instrumentation technologies on the cutting edge with two experimental areas (short–up to 1m–and long focal–up to 20m, 32m in the future). To monitor the laser beam characteristics through the interaction chambers, more than 500 devices are distributed in the facility and controlled through a Tango bus. This poster focuses on two linked software components: DevPylon and DevVimba. Each affected to a type of cameras: Basler via PyPylon wrapper interface of Pylon Software suite and Prosilica via Vimba SDK library, respectively. These two Tango devices are Python scripts constructed and generated via POGO. They offer a specific way to monitor more than 100 CCD cameras in the facility at an image acquisition and display rate up to 10Hz for a maximum of 300-shot at 1-minute rate per day and on an always-ON mode throughout the day. |
|||
Slides TUMBCMO32 [1.030 MB] | |||
Poster TUMBCMO32 [1.421 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO32 | ||
About • | Received ※ 09 October 2023 — Revised ※ 20 November 2023 — Accepted ※ 20 December 2023 — Issued ※ 20 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPDP010 | The Laser Megajoule Facility Status Report | target, diagnostics, experiment, controls | 498 |
|
|||
The Laser MegaJoule, a 176-beam laser facility developed by CEA, is located near Bordeaux. It is part of the French Simulation Program, which combines improvement of theoretical models used in various domains of physics and high performance numerical simulation. It is designed to deliver about 1.4 MJ of energy on targets, for high energy density physics experiments, including fusion experiments. The LMJ technological choices were validated on the LIL, a scale-1 prototype composed of 1 bundle of 4-beams. The first bundle of 8-beams was commissioned in October 2014 with the realisation of the first experiment on the LMJ facility. The operational capabilities are increasing gradually every year until the full completion by 2025. By the end of 2023, 18 bundles of 8-beams will be assembled and 15 bundles are expected to be fully operational. In this paper, a presentation of the LMJ Control System architecture is given. A description of the integration platform and simulation tools, located outside the LMJ facility, is given. Finally, a review of the LMJ status report is detailed with an update on the LMJ and PETAL activities.
LMJ: Laser MegaJoule CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives LIL : Ligne d’Intégration Laser |
|||
Poster TUPDP010 [1.200 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP010 | ||
About • | Received ※ 28 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 08 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPDP011 | The Laser Megajoule Full Automated Sequences | alignment, controls, target, GUI | 504 |
|
|||
The LMJ*, a 176-beam laser facility developed by the French Nuclear Science directorate CEA, is located at the CEA** CESTA site near Bordeaux. The LMJ facility is part of the French Simulation Program. It is designed to deliver about 1.4 MJ of energy on targets, for high energy density physics experiments, including fusion experiments. Since 2022, the LMJ facility aims at carrying out experiments with 12 bundles of 8 laser beams and 12 target diagnostics. In order to achieve daily shots including all the preparatory steps, the LMJ performs night activities from now on and the presence of technical operators is not required. These sequences work on vacuum windows inspection and beam alignment. They take into account all the prerequisites for their good performances and are scheduled automatically one after the other. They deal with material security and unexpected equipment alarms. They endeavour to required tasks success and give a detailed report of the night events to the shot director. This paper gives a presentation of the two sequences with solutions in order to answer the technical specifications and the last enhancements.
*LMJ: Laser MegaJoule **CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives |
|||
Poster TUPDP011 [0.771 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP011 | ||
About • | Received ※ 02 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 19 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPDP012 | Tango at LULI | TANGO, controls, GUI, network | 509 |
|
|||
Funding: CNRS, École polytechnique, CEA, Sorbonne Université Apollon, LULI2000 and HERA are three Research Infrastructures of the Centre national de la recherche scientifique (CNRS), École polytechnique (X), Commissariat à l’Énergie Atomique et aux Energies Alternatives (CEA) and Sorbonne University (SU). Now in past-commissioning phase, Apollon is a four beam laser, multi-petawatt laser facility fitted with instrumentation technologies on the cutting edge with two experimental areas (short–up to 1m–and long focal–up to 20m, 32m in the future). To monitor the laser beam characteristics through the interaction chambers, more than 300 devices are distributed in the facility and controlled through a Tango bus. This poster presents primarily a synthetic view of the Apollon facility, from network to hardware and from virtual machines to software under Tango architecture. We can here have an overview of the different types of devices which are running on the facility and some GUIs developed with the exploitation team to insure the best possible way of running the lasers. While developments are still currently under work for this facility, upgrading the systems of LULI2000 from one side and HERA from the other side are underway by the Control-Command & Supervision team and would follow the same specifications to offer shared protocols and knowledge. |
|||
Poster TUPDP012 [2.267 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP012 | ||
About • | Received ※ 12 October 2023 — Revised ※ 09 November 2023 — Accepted ※ 17 December 2023 — Issued ※ 19 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPDP020 | Summary Report on Machine Learning-Based Applications at the Synchrotron Light Source Delta | injection, controls, synchrotron, storage-ring | 537 |
|
|||
In recent years, several control system applications using machine learning (ML) techniques have been developed and tested to automate the control and optimization of the 1.5 GeV synchrotron radiation source DELTA. These applications cover a wide range of tasks, including electron beam position correction, working point control, chromaticity adjustment, injection process optimization, as well as CHG-spectra (coherent harmonic generation) analysis. Various machine learning techniques have been used to implement these projects. This report provides an overview of these projects, summarizes the current results, and indicates ideas for future improvements. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP020 | ||
About • | Received ※ 04 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 13 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPDP083 | DAQ System Based on Tango, Sardana and PandABox for Millisecond Time Resolved Experiment at the CoSAXS Beamline of MAX IV Laboratory | experiment, controls, detector, TANGO | 713 |
|
|||
CoSAXS is the Coherent and Small Angle X-ray Scattering (SAXS) beamline placed at the diffraction-limited 3 GeV storage ring at MAX IV Laboratory. The beamline can deliver a very high photon flux ~1013 ph/s and it is equipped with state-of-the-art pixel detectors, suitable for experiments with a high time-resolution to be performed. In this work we present the upgraded beamline data acquisition strategy for a millisecond time-resolved SAXS/WAXS experiment, using laser light to induce temperature jumps or UV-excitation with the consequent structural changes on the system. In general terms, the beamline control system is based on TANGO and built on top of it, Sardana provides an advanced scan framework. In order to synchronize the laser light pulse on the sample, the X-ray fast shutter opening time and the X-ray detectors readout, hardware triggers are used. The implementation is done using PandABox, which generates the pulse train for the laser and for all active experimental channels, such as counters and detectors, in synchronization with the fast shutter opening time. PandABox integration is done with a Sardana Trigger Gate Controller, used to configure the pulses parameters as well to orchestrate the hardware triggers during a scan. This paper describes the experiment orchestration, laser light synchronization with multiple X-ray detector. | |||
Poster TUPDP083 [1.645 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP083 | ||
About • | Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPDP088 | Labview-Based Template for Enhanced Accelerator Systems Control: Software Solutions for the CERN-ISOLDE Facilities | controls, ISOL, software, timing | 735 |
|
|||
ISOLDE is part of the experimental infrastructure with-in the CERN accelerator complex that provides radioac-tive ion beams for studies of fundamental nuclear phys-ics, astrophysics, condensed matter physics and medical applications. Complementing the available controls in-frastructure, an easy-to-use set of applications was devel-oped to allow operators to record and display signals from multiple sources, as well as to provide drivers for non-standard, custom-made instruments and specialized off-the-shelf components. Aimed not only at software engineers but developers with any background, a generic and modular software template was developed in LabVIEW following a collab-oration between CERN and ANGARA Technology. This unified template can be extended to support interaction with any instrument and any newly developed applica-tion can be easily added to the existing control system and integrated into the CERN control and monitoring infrastructure. New modules and instrument drivers are easy to maintain as the structure and communication layers are all derived from the same template and based on the same components. In this paper, we will explain the implementation, ar-chitecture and structure of the template, as well as a wide variety of use cases - from motor control to image acquisi-tion and laser-specific equipment control. We will also show use cases of applications developed and deployed within a few days in the ISOLDE facility. | |||
Poster TUPDP088 [0.860 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP088 | ||
About • | Received ※ 20 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 23 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPDP120 | How Embracing a Common Tech Stack Can Improve the Legacy Software Migration Experience | software, database, framework, experiment | 860 |
|
|||
Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Over the last several years, the National Ignition Facility (NIF), the world’s largest and most energetic laser, has regularly conducted approximately 400 shots per year. Each experiment is defined by up to 48 unique pulse shapes, with each pulse shape potentially having thousands of configurable data points. The importance of accurately representing small changes in pulse shape, illustrated by the historic ignition experiment in December 2022, highlights the necessity for pulse designers at NIF to have access to robust, easy to use, and accurate design software that can integrate with the existing and future ecosystem of software at NIF. To develop and maintain this type of complex software, the Shot Data Systems (SDS) group has recently embraced leveraging a common set of recommended technologies and frameworks for software development across their suite of applications. This paper will detail SDS’s experience migrating an existing legacy Java Swing-based pulse shape editor into a modern web application leveraging technologies recommended by the common tech stack, including Spring Boot, TypeScript, React and Docker with Kubernetes, as well as discuss how embracing a common set of technologies influenced the migration path, improved the developer experience, and how it will benefit the extensibility and maintainability of the application for years to come. LLNL Release Number: LLNL-ABS-848203 |
|||
Poster TUPDP120 [0.611 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP120 | ||
About • | Received ※ 27 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 16 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPDP121 | Conceptual Design of the Matter in Extreme Conditions Upgrade (MEC-U) Rep-Rated Laser Control System | controls, timing, EPICS, hardware | 865 |
|
|||
Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Lawrence Livermore National Laboratory (LLNL) is delivering the Dual-mode Energetic Laser for Plasma and High Intensity Science (DELPHI) system to SLAC as part of the MEC-U project to create an unprecedented platform for high energy density experiments. The DELPHI control system is required to deliver short and/or long pulses at a 10 Hz firing rate with femto/pico-second accuracy sustained over fourteen 12-hour operator shifts to a common shared target chamber. The MEC-U system requires the integration of the control system with SLAC provided controls related to personnel safety, machine safety, precision timing, data analysis and visualization, amongst others. To meet these needs along with the system’s reliability, availability, and maintainability requirements, LLNL is delivering an EPICS based control system leveraging proven SLAC technology. This talk presents the conceptual design of the DELPHI control system and the methods planned to ensure its successful commissioning and delivery to SLAC. |
|||
Poster TUPDP121 [1.610 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP121 | ||
About • | Received ※ 02 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 17 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPDP139 | The Pointing Stabilization Algorithm for the Coherent Electron Cooling Laser Transport at RHIC | operation, gun, electron, controls | 913 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. Coherent electron cooling (CeC) is a novel cooling technique being studied in the Relativistic Heavy Ion Collider (RHIC) as a candidate for strong hadron cooling in the Electron-Ion Collider (EIC). The electron beam used for cooling is generated by laser light illuminating a photocathode after that light has traveled approximately 40 m from the laser output. This propagation is facilitated by three independent optical tables that move relative to one another in response to changes in time of day, weather, and season. The alignment drifts induced by these environmental changes, if left uncorrected, eventually render the electron beam useless for cooling. They are therefore mitigated by an active "slow" pointing stabilization system found along the length of the transport, copied from the system that transversely stabilized the Low Energy RHIC electron Cooling (LEReC) laser beam during the 2020 and 2021 RHIC runs. However, the system-specific optical configuration and laser operating conditions of the CeC experiment required an adapted algorithm to address inadequate beam position data and achieve greater dynamic range. The resulting algorithm was successfully demonstrated during the 2022 run of the CeC experiment and will continue to stabilize the laser transport for the upcoming run. A summary of the algorithm is provided. |
|||
Poster TUPDP139 [2.129 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP139 | ||
About • | Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 08 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WE1BCO07 | The LCLS-II Precision Timing Control System | timing, EPICS, controls, interface | 966 |
|
|||
The LCLS-II precision timing system is responsible for the synchronization of optical lasers with the LCLS-II XFEL. The system uses both RF and optical references for synchronization. In contrast to previous systems used at LCLS the optical lasers are shared resources, and must be managed during operations. The timing system consists of three primary functionalities: RF reference distribution, optical reference distribution, and a phase-locked loop (PLL). This PLL may use either the RF or the optical reference as a feedback source. The RF allows for phase comparisons over a relatively wide range, albeit with limited resolution, while the optical reference enables very fine phase comparison (down to attoseconds), but with limited operational range. These systems must be managed using high levels of automation. Much of this automation is done via high-level applications developed in EPICS. The beamline users are presented with relatively simple interfaces that streamline operation and abstract much of the system complexity away. The system provides both PyDM GUIs as well as python interfaces to enable time delay scanning in the LCLS-II DAQ. | |||
Slides WE1BCO07 [3.734 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE1BCO07 | ||
About • | Received ※ 06 November 2023 — Revised ※ 09 November 2023 — Accepted ※ 14 December 2023 — Issued ※ 20 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WE2BCO02 | In the Midst of Fusion Ignition: A Look at the State of the National Ignition Facility Control and Information Systems | controls, experiment, target, optics | 973 |
|
|||
Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 The National Ignition Facility (NIF) is the world’s largest and most energetic 192-laser-beam system which conducts experiments in High Energy Density (HED) physics and Inertial Confinement Fusion (ICF). In December 2022, the NIF achieved a scientific breakthrough when, for the first time ever, the ICF ignition occurred under laboratory conditions. The key to the NIF’s experimental prowess and versatility is not only its power but also its precise control. The NIF controls and data systems place the experimenter in full command of the laser and target diagnostics capabilities. The recently upgraded Master Oscillator Room (MOR) system precisely shapes NIF laser pulses in the temporal, spatial, and spectral domains. Apart from the primary 10-meter spherical target chamber, the NIF laser beams can now be directed towards two more experimental stations to study laser interactions with optics and large full beam targets. The NIF’s wide range of target diagnostics continues to expand with new tools to probe and capture complex plasma phenomena using x-rays, gamma-rays, neutrons, and accelerated protons. While the increasing neutron yields mark the NIF’s steady progress towards exciting experimental regimes, they also require new mitigations for radiation damage in control and diagnostic electronics. With many NIF components approaching 20 years of age, a Sustainment Plan is now underway to modernize NIF, including controls and information systems, to assure NIF operations through 2040. LLNL Release Number: LLNL-ABS-847574 |
|||
Slides WE2BCO02 [4.213 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO02 | ||
About • | Received ※ 02 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WE3BCO03 | Data Management for Tracking Optic Lifetimes at the National Ignition Facility | optics, database, site, status | 1012 |
|
|||
Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The National Ignition Facility (NIF), the most energetic laser in the world, employs over 9000 optics to reshape, amplify, redirect, smooth, focus, and convert the wavelength of laser light as it travels along 192 beamlines. Underlying the management of these optics is an extensive Oracle database storing details of the entire life of each optic from the time it leaves the vendor to the time it is retired. This journey includes testing and verification, preparing, installing, monitoring, removing, and in some cases repairing and re-using the optics. This talk will address data structures and processes that enable storing information about each step like identifying where an optic is in its lifecycle and tracking damage through time. We will describe tools for reporting status and enabling key decisions like which damage sites should be blocked or repaired and which optics exchanged. Managing relational information and ensuring its integrity is key to managing the status and inventory of optics for NIF. LLNL Release Number: LLNL-ABS-847598 |
|||
Slides WE3BCO03 [2.379 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO03 | ||
About • | Received ※ 26 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 24 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WE3AO02 | High Fidelity Pulse Shaping for the National Ignition Facility | experiment, target, diagnostics, timing | 1058 |
|
|||
Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 The National Ignition Facility (NIF) is the world’s most energetic laser capable of delivering 2.05MJ of energy with peak powers up to 500 terawatts on targets a few mms in diameter. This enables extreme conditions in temperature and pressure allowing a wide variety of exploratory experiments from triggering fusion ignition to emulating temperatures at the center of stars or pressures at the center of giant planets. The capability enabled the groundbreaking results of December 5th, 2022 when scientific breakeven in fusion was demonstrated with a target gain of 1.5. A key aspect of supporting various experiments at NIF is the ability to custom shape the pulses of the 48 quads independently with high fidelity as needed by the experimentalists. For more than 15 years, the Master Oscillator Room’s (MOR) pulse shaping system has served NIF well. However, a pulse shaping system that would provide higher shot-to-shot stability, better power balance and accuracy across the 192 beams is required for future NIF experiments including ignition. The pulse shapes requested vary drastically at NIF which led to challenging requirements for the hardware, timing and closed loop shaping systems. In the past two years, a High-Fidelity Pulse Shaping System was designed, and a proof-of-concept system was shown to meet all requirements. This talk will discuss design challenges, solutions and how modernization of the pulse shaping hardware helped simple control algorithms meet the stringent requirements set by the experimentalists. LLNL Release Number: LLNL-ABS-848060 |
|||
Slides WE3AO02 [6.678 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3AO02 | ||
About • | Received ※ 04 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 22 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TH1BCO02 | Development of Laser Accelerator Control System Based on EPICS | controls, EPICS, operation, proton | 1093 |
|
|||
Funding: State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China; China’s Ministry of Science and Technology supports Peking University in constructing a proton radiotherapy device based on a petawatt (PW) laser accelerator. The control system’s functionality and performance are vital for the accelerator’s reliability, stability, and efficiency. The PW laser accelerator control system has a three-layer distributed architecture, including device control, front-end (input/output) control and central control (data management, and human-machine interface) layers. The software platform primarily uses EPICS, supplemented by PLC, Python, and Java, while the hardware platform comprises industrial control computers, servers, and private cloud configurations. The control system incorporates various subsystems that manage the laser, target field, beamline, safety interlocks, conditions, synchronization, and functionalities related to data storage, display, and more. This paper presents a control system implementation suitable for laser accelerators, providing valuable insights for future laser accelerator control system development. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH1BCO02 | ||
About • | Received ※ 04 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 15 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THMBCMO32 | Robotic Process Automation: on the Continuity of Applications Development at SOLEIL | PLC, injection, electron, synchrotron | 1275 |
|
|||
SOLEIL is currently in the Technical Design Report (TDR) phase of a major upgrade of the facility. In its digital transformation, the development of processes and systems with a high degree of autonomy is at the center of the SOLEIL II project. One of the important components used to achieve a high degree of autonomy is the use of 6-axis robotic arms. Thus, in recent years, SOLEIL has developed and put into operation robotic applications to automate some processes of its beamlines and some processes of magnetic measurements of the insertion devices. The last year SOLEIL has been developing two new robotic applications, having thus continuity in the development of applications using its robotic standard. This paper describes these two new applications that being developed to automate the injection of liquid samples for BioSAXS experiments at the SWING beamline and to automate the mechanical and magnetic adjustment of the modules that compose an insertion device. | |||
Slides THMBCMO32 [17.856 MB] | |||
Poster THMBCMO32 [1.484 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO32 | ||
About • | Received ※ 05 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 22 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPDP012 | Evolution of the Laser Megajoule Timing System | timing, diagnostics, experiment, target | 1312 |
|
|||
The Laser MegaJoule (LMJ), a 176-beam laser facility developed by CEA, is located at the CEA CESTA site near Bordeaux. The LMJ facility is part of the French Simulation Program, which combines improvement of theoretical models and data used in various fields of physics, high performance numerical simulations and experimental validation. It is designed to deliver about 1.4 MJ of energy on targets, for high energy density physics experiments, including fusion experiments. With 120 operational beams at the end of 2023, operational capabilities are gradually increasing until the full completion of the LMJ facility by 2025. To verify the synchronization of the precise delay generators, used on each bundle, a new timing diagnostic has been designed to observe the 1w and 3w fiducial signals. Meanwhile, due to electronic obsolescence, a new modified prototype precise of a delay generator, with ’new and old channels’, has been tested and compared. In this paper, a review of the LMJ synchronization report is given with a description of the first timing diagnostic as well as an overview of the LMJ delay generator obsolescence update. It also presents some leads for a future timing system.
LMJ: Laser MegaJoule CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives |
|||
Poster THPDP012 [3.535 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP012 | ||
About • | Received ※ 10 October 2023 — Revised ※ 14 November 2023 — Accepted ※ 19 December 2023 — Issued ※ 21 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPDP031 | Development of Beam Gate System Using the White Rabbit at SuperKEKB | kicker, controls, operation, septum | 1381 |
|
|||
Currently, SuperKEK has network-based systems such as trigger delivery, bucket selection, abort system, beam permission, and distributed DAQ, all of which are operated as separate systems. The White Rabbit (WR) has extraordinary multi-functionality when combined with the modules already developed, so it is possible that in the future all systems could be operated in a WR network. This would lead to a reduction in human, time, and financial costs. We constructed a beam gate, which is a part of the beam permission system, on a trial basis using WR. These trigger deliveries need to be interlocked. The trigger delivery to the electron gun has a specification that the next trigger delivery is turned ON/OFF after receiving the ON/OFF signal at any given timing. For the above reasons, the delay time from the receipt of the ON/OFF signal from the electron gun is not a fixed value, making it difficult to interlock with the trigger delivery of other devices. By turning on/off the trigger delivery using a precisely time-synchronized WR, the ON/OFF of the trigger delivery of all devices could be correctly interlocked. | |||
Poster THPDP031 [0.529 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP031 | ||
About • | Received ※ 09 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 18 December 2023 — Issued ※ 18 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPDP052 | Characterizing Motion Control Systems to Enable Accurate Continuous and Event-Based Scans | controls, PLC, neutron, timing | 1431 |
|
|||
The European Spallation Source (ESS) is adopting innovative data acquisition and analysis methods using global timestamping for neutron scattering research. This study characterises the timing accuracy and reliability of the instrument control system by examining an integrated motion and fast detection system. We designed an experimental apparatus featuring a motion axis controlled by a Beckhoff programmable logic controller (PLC) using TwinCAT 3 software. The encoder readback is timestamped in the PLC, which is time-synchronised with the ESS master clock via a Microresearch Finland event receiver (EVR) using Precision Time Protocol (PTP). We repeatedly scanned the motor between known positions at different speeds. The system was characterised by correlating the position and timestamp recorded by the PLC with independent information using a fast optical position sensor read out directly by the MRF system. The findings of this study provide a good benchmark for the upcoming experiments in neutron scattering research at ESS and should be interesting for those aiming to build similar setups. | |||
Poster THPDP052 [1.185 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP052 | ||
About • | Received ※ 05 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FR2AO01 | How Accurate Laser Physics Modeling Is Enabling Nuclear Fusion Ignition Experiments | target, experiment, optics, software | 1620 |
|
|||
Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 This last year we achieved an important milestone by reaching fusion ignition at Lawrence Livermore National Laboratory’s (LLNL) National Ignition Facility (NIF), a multi-decadal effort involving a large collaboration. The NIF facility contains a 192-beam 4.2 MJ neodymium glass laser (around 1053 nm) that is frequency converted to 351 nm light. To meet stringent laser performance required for ignition, laser modeling codes including the Virtual Beamline (VBL) and its predecessors are used as engines of the Laser Operations Performance Model (LPOM). VBL comprises an advanced nonlinear physics model that captures the response of all the NIF laser components (from IR to UV and nJ to MJ) and precisely computes the input beam power profile needed to deliver the desired UV output on target. NIF was built to access the extreme high energy density conditions needed to support the nation’s nuclear stockpile and to study Inertial Confinement Fusion (ICF). The design, operation and future enhancements to this laser system are guided by the VBL physics modeling code which uses best-in-class standards to enable high-resolution simulations on the Laboratory’s high-performance computing platforms. The future of repeated and optimized ignition experiments relies on the ability for the laser system to accurately model and produce desired power profiles at an expanded regime from the laser’s original design criteria. LLNL Release Number: LLNL-ABS-847846 |
|||
Slides FR2AO01 [3.580 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2AO01 | ||
About • | Received ※ 26 September 2023 — Revised ※ 12 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 14 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||