Keyword: real-time
Paper Title Other Keywords Page
TU1BCO06 Disentangling Beam Losses in The Fermilab Main Injector Enclosure Using Real-Time Edge AI FPGA, controls, operation, network 273
 
  • K.J. Hazelwood, J.M.S. Arnold, M.R. Austin, J.R. Berlioz, P.M. Hanlet, M.A. Ibrahim, A.T. Livaudais-Lewis, J. Mitrevski, V.P. Nagaslaev, A. Narayanan, D.J. Nicklaus, G. Pradhan, A.L. Saewert, B.A. Schupbach, K. Seiya, R.M. Thurman-Keup, N.V. Tran
    Fermilab, Batavia, Illinois, USA
  • J.YC. Hu, J. Jiang, H. Liu, S. Memik, R. Shi, A.M. Shuping, M. Thieme, C. Xu
    Northwestern University, EVANSTON, USA
  • A. Narayanan
    Northern Illinois University, DeKalb, Illinois, USA
 
  The Fer­mi­lab Main In­jec­tor en­clo­sure houses two ac­cel­er­a­tors, the Main In­jec­tor and Re­cy­cler Ring. Dur­ing nor­mal op­er­a­tion, high in­ten­sity pro­ton beams exist si­mul­ta­ne­ously in both. The two ac­cel­er­a­tors share the same beam loss mon­i­tors (BLM) and mon­i­tor­ing sys­tem. De­ci­pher­ing the ori­gin of any of the 260 BLM read­ings is often dif­fi­cult. The (Ac­cel­er­a­tor) Real-time Edge AI for Dis­trib­uted Sys­tems pro­ject, or READS, has de­vel­oped an AI/ML model, and im­ple­mented it on fast FPGA hard­ware, that dis­en­tan­gles mixed beam losses and at­trib­utes prob­a­bil­i­ties to each BLM as to which ma­chine(s) the loss orig­i­nated from in real-time. The model in­fer­ences are then streamed to the Fer­mi­lab ac­cel­er­a­tor con­trols net­work (ACNET) where they are avail­able for op­er­a­tors and ex­perts alike to aid in tun­ing the ma­chines.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU1BCO06  
About • Received ※ 06 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 15 November 2023 — Issued ※ 06 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO12 Multi-Dimensional Spectrogram Application for Live Visualization and Manipulation of Large Waveforms cavity, controls, EPICS, proton 368
 
  • B.E. Bolling, A.A. Gorzawski, J. Peterson
    ESS, Lund, Sweden
 
  The Eu­ro­pean Spal­la­tion Source (ESS) is a re­search fa­cil­ity under con­struc­tion aim­ing to be the world’s most pow­er­ful pulsed neu­tron source. It is pow­ered by a com­plex par­ti­cle ac­cel­er­a­tor de­signed to pro­vide a 2.86 ms long pro­ton pulse at 2 GeV with a rep­e­ti­tion rate of 14 Hz. Pro­tons are ac­cel­er­ated via cav­ity fields through var­i­ous ac­cel­er­at­ing struc­tures that are pow­ered by Ra­dio-Fre­quency (RF) power. As the cav­ity fields may break down due to var­i­ous rea­sons, usu­ally post-mortem data of such events con­tain the in­for­ma­tion needed re­gard­ing the cause. In other events, the un­der­ly­ing cause may have been vis­i­ble on pre­vi­ous beam pulses be­fore the in­ter­lock trig­ger­ing event. The Multi-Di­men­sional Spec­tro­gram Ap­pli­ca­tion is de­signed to be able to col­lect, ma­nip­u­late and vi­su­al­ize large wave­forms at high rep­e­ti­tion rates, with the ESS goal being 14 Hz, for ex­am­ple cav­ity fields, show­ing oth­er­wise un­no­ticed tem­po­rary break­downs that may ex­plain the some­times-un­known rea­son for in­creased power (com­pen­sat­ing for those in­vis­i­ble tem­po­rary break­downs). The first phys­i­cal event that was recorded with the tool was quench­ing of a su­per­con­duct­ing RF cav­ity in real time in 3D. This paper de­scribes the ap­pli­ca­tion de­vel­oped using Python and the pure-python graph­ics and GUI li­brary PyQt­Graph and PyQt5 with Python-OpenGL bind­ings.  
slides icon Slides TUMBCMO12 [2.932 MB]  
poster icon Poster TUMBCMO12 [11.475 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO12  
About • Received ※ 04 October 2023 — Accepted ※ 23 November 2023 — Issued ※ 23 November 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO24 A New Real-Time Processing Platform for the Elettra 2.0 Storage Ring feedback, power-supply, controls, network 419
 
  • G. Gaio, A.I. Bogani, M. Cautero, L. Pivetta, G. Scalamera, I. Trovarelli
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • L. Anastasio
    University of L’Aquila, L’Aquila, Italy
 
  Pro­cess­ing syn­chro­nous data is es­sen­tial to im­ple­ment ef­fi­cient con­trol schemes. A new frame­work based on Linux and DPDK will be used to ac­quire and process sen­sors and con­trol ac­tu­a­tors at very high rep­e­ti­tion rate for Elet­tra 2.0. As part of the on­go­ing pro­ject, the ac­tual fast orbit feed­back sub­sys­tem is going to be re-im­ple­mented with this new tech­nol­ogy. More­over the com­mu­ni­ca­tion per­for­mance with the new power con­vert­ers for the new stor­age ring is pre­sented.  
slides icon Slides TUMBCMO24 [0.683 MB]  
poster icon Poster TUMBCMO24 [0.218 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO24  
About • Received ※ 02 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 08 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO34 Motion Control Architecture and Kinematics for Multi-DoF Kirkpatrick-Baez Focusing Mirrors System at LNLS-Sirius controls, focusing, feedback, synchrotron 443
 
  • J.P.S. Furtado, C.S.N.C. Bueno, J.V.E. Matoso, M.A. Montevechi Filho, G.B.Z.L. Moreno, T.R. Silva Soares
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
In mod­ern 4th gen­er­a­tion syn­chro­tron fa­cil­i­ties, piezo ac­tu­a­tors are widely ap­plied due to their nano­met­ric pre­ci­sion in lin­ear mo­tion and sta­bil­ity. This work shows the im­ple­men­ta­tion of a switch­ing con­trol ar­chi­tec­ture and a tri­pod kine­mat­ics for a set of 4 piezo ac­tu­a­tors, re­spon­si­ble by po­si­tion­ing the short-stroke: the ver­ti­cal and hor­i­zon­tal fo­cus­ing mir­rors of the Kirk­patrick-Baez mir­ror sys­tem at MOGNO Beam­line (X-Ray Mi­cro­to­mog­ra­phy). The switch­ing con­trol ar­chi­tec­ture was cho­sen to bal­ance tim­ing to move through the work­ing range (chang­ing the beam in­ci­dence on stripes of low/high en­ergy), res­o­lu­tion and in­fra­struc­ture costs. This paper also shows the im­ple­men­ta­tion and re­sults of the de­vel­oped kine­mat­ics by lay­ers that un­cou­ples short-stroke from long-stroke to fix any par­a­sitic dis­place­ments that occur on the gran­ite bench lev­el­ers due to slip­page dur­ing the move­ment and to match the re­quired beam sta­bil­ity with­out los­ing align­ment flex­i­bil­ity or ad­just­ment re­peata­bil­ity. The ar­chi­tec­ture was built be­tween a PIMikro­Move set of dri­ver-ac­tu­a­tors and an Omron Delta Tau Power Brick con­troller due to its stan­dard­iza­tion across the con­trol sys­tems so­lu­tions at Sir­ius, ease of con­trol soft­ware scal­a­bil­ity and its ca­pa­bil­ity to per­form cal­cu­la­tions and sig­nal switch­ing for con­trol in C lan­guage, with real-time per­for­mance to make ad­just­ments to the an­gles re­spon­si­ble by fo­cus­ing the beam in a speed that matches the re­quired po­si­tion sta­bil­ity, guar­an­tee­ing the nec­es­sary res­o­lu­tion for the ex­per­i­ments.
 
slides icon Slides TUMBCMO34 [1.753 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO34  
About • Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 08 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP005 Improvements on Kinematics and Control of Granite Benches at LNLS-Sirius controls, resonance, damping, timing 485
 
  • J.V.E. Matoso, J.P.S. Furtado, J.P.B. Ishida, T.R. Silva Soares
    LNLS, Campinas, Brazil
 
  At the Brazil­ian Syn­chro­tron Light Lab­o­ra­tory, the ra­di­a­tion beam is con­di­tioned by op­ti­cal el­e­ments that must be po­si­tioned with high sta­bil­ity and pre­ci­sion. Many of the op­ti­cal el­e­ments are po­si­tioned using gran­ite benches that pro­vide high cou­pling stiff­ness to the ground and po­si­tion con­trol in up to six de­grees of free­dom, using a set of step­per mo­tors. The so­lu­tion of the in­verse kine­mat­ics was done nu­mer­i­cally by the New­ton Raph­son method. By em­ploy­ing the prop­erty that these sys­tems have small ro­ta­tion an­gles, the Ja­co­bian ma­trix used in this nu­mer­i­cal method can be sim­pli­fied to re­duce com­pu­ta­tional ex­e­cu­tion time and allow high pro­cess­ing rates. This paper also shows the re­sults of adding a notch fil­ter to the po­si­tion servo con­trol loop of the gran­ite benches to in­crease sta­bil­ity due to their mass-spring-damper char­ac­ter­is­tics. The kine­mat­ics and con­trol of the gran­ite benches are im­ple­mented in an Omron Power Brick LV con­troller, with the kine­mat­ics de­vel­oped in MAT­LAB and the C-code gen­er­ated by MAT­LAB C-Coder. Re­duc­ing the ex­e­cu­tion time of the kine­mat­ics im­proves the ef­fi­cient use of the com­pu­ta­tional re­sources and al­lows the real-time clock rate to be in­creased.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP005  
About • Received ※ 05 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 04 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP006 System Identification Embedded in a Hardware-Based Control System with CompactRIO controls, FPGA, experiment, HOM 489
 
  • T.R. Silva Soares, J.L. Brito Neto, J.P.S. Furtado, R.R. Geraldes
    LNLS, Campinas, Brazil
 
  The de­vel­op­ment of in­no­v­a­tive model-based de­sign high band­width mecha­tronic sys­tems with strin­gent per­for­mance spec­i­fi­ca­tions has be­come ubiq­ui­tous at LNLS-Sir­ius beam­lines. To achieve such un­prece­dent spec­i­fi­ca­tions, closed loop con­trol ar­chi­tec­ture must be im­ple­mented in a fast, flex­i­ble and re­li­able plat­form such as NI Com­pactRIO (cRIO) con­troller that com­bines FPGA and real-time ca­pa­bil­i­ties. The de­sign phase and life-cy­cle man­age­ment of such mecha­tron­ics sys­tems heav­ily de­pends on high qual­ity ex­per­i­men­tal data ei­ther to en­able rapid pro­to­typ­ing, or even to im­ple­ment con­tin­u­ous im­prove­ment process dur­ing op­er­a­tion. This work aims to pre­sent and com­pare dif­fer­ent tech­niques to stim­u­lus sig­nal gen­er­a­tion ap­proach­ing Schroeder phas­ing and Tukey win­dow­ing for bet­ter crest fac­tor, sig­nal-to-noise ratio, min­i­mum mecha­tronic stress, and plant iden­ti­fi­ca­tion. Also show the Lab­VIEW im­ple­men­ta­tion to en­able em­bed­ded­ing this frame­work that re­quires spe­cific sig­nal syn­chro­niza­tion and pro­cess­ing on the main ap­pli­ca­tion con­tain­ing a hard­ware-based con­trol ar­chi­tec­ture, in­creas­ing sys­tem di­ag­nos­tic and main­te­nance abil­ity. Fi­nally, ex­per­i­men­tal re­sults from the High-Dy­namic Dou­ble-Crys­tal Mono­chro­ma­tor (HD-DCM-Lite) of QUATI (quick ab­sorp­tion spec­troscopy) and SA­PU­CAIA (small-an­gle scat­ter­ing) beam­lines and from the High-Dy­namic Cryo­genic Sam­ple Stage from SAPOTI (multi-an­a­lyt­i­cal X-ray tech­nique) of CARNAÚBA beam­line are also pre­sented in this paper.  
poster icon Poster TUPDP006 [0.766 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP006  
About • Received ※ 06 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP014 Bluesky Web Client at Bessy II experiment, controls, status, interface 518
 
  • H.L. He, G. Preuß, S.S. Sachse, W. Smith
    HZB, Berlin, Germany
  • R. Ovsyannikov
    BESSY GmbH, Berlin, Germany
 
  Funding: Helmholtz-Zentrum Berlin
Con­sid­er­ing the ex­ist­ing Bluesky con­trol frame­work at BESSY II, a web client with React based on Bluesky HTTP Server is being de­vel­oped. We hope to achieve a cross-plat­form and cross-de­vice sys­tem to re­al­ize re­mote con­trol and mon­i­tor­ing of ex­per­i­ments. The cur­rent func­tions of the sys­tem are mon­i­tor­ing of the Bluesky Queue Server sta­tus, con­trol over a Bluesky Run En­gine en­vi­ron­ment, brows­ing of Queue Server his­tory and edit­ing and run­ning of Bluesky plans. Chal­lenges around the pre­sen­ta­tion of live data are ex­plored. This work builds on that of NSLS II who cre­ated a React based web in­ter­face and im­ple­ments a tool for BESSY II.
 
poster icon Poster TUPDP014 [0.311 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP014  
About • Received ※ 29 September 2023 — Accepted ※ 01 December 2023 — Issued ※ 11 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP042 Control and Data Acquisition System Upgrade in RFX-mod2 controls, data-acquisition, plasma, PLC 607
 
  • G. Martini, N. Ferron, A.F. Luchetta, G. Manduchi, A. Rigoni, C. Taliercio
    Consorzio RFX, Padova, Italy
  • P. Barbato
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy
 
  RFX-mod2, cur­rently under con­struc­tion at Con­sorzio RFX, is an evo­lu­tion of the for­mer RFX-mod ex­per­i­ment, with an im­proved shell and a larger set of elec­tro­mag­netic sen­sors. This set, in­clud­ing 192 sad­dle coils, al­lows ex­plor­ing a wide range of plasma con­trol schemas, but at the same time poses a chal­lenge for its Con­trol and Data Ac­qui­si­tion Sys­tem (CODAS). RFX-mod2 CODAS is re­quired to pro­vide the high-speed ac­qui­si­tion of a large set of sig­nals and their in­clu­sion in the Plasma Con­trol Sys­tem that must pro­vide a sub-mil­lisec­ond re­sponse to plasma in­sta­bil­i­ties. While brand new so­lu­tions are pro­vided for the ac­qui­si­tion of the elec­tro­mag­netic sig­nals, in­volv­ing Zynq-based ADC de­vices, other parts of the CODAS sys­tem have been re­tained from the for­mer RFX-mod CODAS. The paper pre­sents the so­lu­tions adopted in the new RFX-mod2 CODAS, be­long­ing to three main cat­e­gories: 1) Plasma Real-Time con­trol, in­clud­ing both hard­ware so­lu­tions based on Zynq and the in­te­gra­tion of data ac­qui­si­tion and real-time frame­works for its soft­ware con­fig­u­ra­tion. For this pur­pose, MD­Splus and MARTe2, two frame­works for data ac­qui­si­tion and real-time con­trol, re­spec­tively, have been adopted, which are widely used in the fu­sion com­mu­nity. 2) Data ac­qui­si­tion, in­clud­ing up­grades per­formed to the for­mer cPCI-based sys­tems and new ad-hoc so­lu­tions based on Red­Pi­taya. 3) Plant su­per­vi­sion, car­ried out in WinCC-OA and in­te­grated with the data ac­qui­si­tion sys­tem via a new WinCC-OA data­base plu­gin.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP042  
About • Received ※ 05 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 16 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP048 The Upgrade of Pulsed Magnet Control System Using PXIe Devices at KEK LINAC controls, EPICS, linac, operation 635
 
  • D. Wang, M. Satoh
    KEK, Ibaraki, Japan
 
  In the KEK elec­tron-positron in­jec­tor LINAC, the pulsed mag­net con­trol sys­tem mod­u­lates the mag­netic field at in­ter­vals of 20 ms, en­abling si­mul­ta­ne­ous in­jec­tion into four dis­tinct tar­get rings: 2.5 GeV PF, 6.5 GeV PF-AR, 4 GeV Su­perKEKB LER, and 7 GeV Su­perKEKB HER. This sys­tem op­er­ates based on a trig­ger sig­nal de­liv­ered from the event tim­ing sys­tem. Upon the re­ceiv­ing spec­i­fied event code, the PXI DAC board out­puts a wave­form to the pulse dri­ver, which con­se­quently de­ter­mines the cur­rent of the pulsed mag­net. The com­bi­na­tion of Win­dows 8.1 and Lab­VIEW was uti­lized to im­ple­ment the con­trol sys­tem since 2017. Nonethe­less, due to the ces­sa­tion of sup­port for Win­dows 8.1, a sys­tem up­grade has be­come im­per­a­tive. To ad­dress this, Linux has been se­lected as a suit­able re­place­ment for Win­dows and the EPICS dri­ver for PXIe de­vices is thus re­quired. This man­u­script in­tro­duces the de­vel­op­ment of the novel Linux-based pulsed mag­net con­trol sys­tem.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP048  
About • Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 14 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP072 Overview of Observation Preparation and Scheduling on the MeerKAT Radio Telescope controls, operation, factory, MMI 669
 
  • L.P. Williams, R.L. Schwartz
    SARAO, Cape Town, South Africa
 
  Funding: National Research Foundation (South Africa)
The MeerKAT radio tele­scope per­forms a wide va­ri­ety of sci­en­tific ob­ser­va­tions. Ob­ser­va­tion du­ra­tions range from a few min­utes, to many hours, and may form part of ob­serv­ing cam­paigns that span many weeks. Sta­tic ob­ser­va­tion re­quire­ments, such as re­sources or array con­fig­u­ra­tion, may be de­ter­mined and ver­i­fied months in ad­vance. Other re­quire­ments how­ever, such as at­mos­pheric con­di­tions, can only be ver­i­fied hours be­fore the planned ob­ser­va­tion event. This wide va­ri­ety of con­fig­u­ra­tion, sched­ul­ing and con­trol pa­ra­me­ters are man­aged with fea­tures pro­vided by the MeerKAT soft­ware. The short term sched­ul­ing func­tion­al­ity has ex­panded from sim­ple queues to sup­port for au­to­matic sched­ul­ing (queu­ing). To sup­port long term sched­ule plan­ning, the MeerKAT tele­scope in­cludes an Ob­ser­va­tion Pan­ning Tool which pro­vides con­fig­u­ra­tion check­ing as well as dry-run en­vi­ron­ments that can in­ter­act with the pro­duc­tion sys­tem. Ob­ser­va­tions are at­om­ized to sup­port sim­pler spec­i­fi­ca­tion, fa­cil­i­tat­ing ma­chine learn­ing pro­jects and more flex­i­bil­ity in sched­ul­ing around en­gi­neer­ing and main­te­nance events. This paper will pro­vide an overview of ob­ser­va­tion spec­i­fi­ca­tion, con­fig­u­ra­tion, and sched­ul­ing on the MeerKAT tele­scope. The sup­port for in­te­gra­tion with en­gi­neer­ing sub­sys­tems is also de­scribed. En­gi­neer­ing sub­sys­tems in­clude User Sup­plied Equip­ment which are hard­ware and com­put­ing re­sources in­te­grated to ex­pand the MeerKAT tele­scope’s ca­pa­bil­i­ties.
 
poster icon Poster TUPDP072 [1.546 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP072  
About • Received ※ 05 October 2023 — Revised ※ 09 November 2023 — Accepted ※ 20 December 2023 — Issued ※ 21 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUSDSC02 Integrating Online Analysis with Experiments to Improve X-Ray Light Source Operations experiment, interface, simulation, framework 921
 
  • N.M. Cook, E.G. Carlin, J.A. Einstein-Curtis, R. Nagler, R. O’Rourke
    RadiaSoft LLC, Boulder, Colorado, USA
  • A.M. Barbour, M. Rakitin, L. Wiegart, H. Wijesinghe
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number DE-SC00215553.
The de­sign, ex­e­cu­tion, and analy­sis of light source ex­per­i­ments re­quires the use of so­phis­ti­cated sim­u­la­tion, con­trols and data man­age­ment tools. Ex­ist­ing work­flows re­quire sig­nif­i­cant spe­cial­iza­tion to ac­com­mo­date spe­cific beam­line op­er­a­tions and data pre-pro­cess­ing steps nec­es­sary for more in­ten­sive analy­sis. Re­cent ef­forts to ad­dress these needs at the Na­tional Syn­chro­tron Light Source II (NSLS-II) have re­sulted in the cre­ation of the Bluesky data col­lec­tion frame­work, an open-source li­brary for co­or­di­nat­ing ex­per­i­men­tal con­trol and data col­lec­tion. Bluesky pro­vides high level ab­strac­tion of ex­per­i­men­tal pro­ce­dures and in­stru­ment read­outs to en­cap­su­late generic work­flows. We pre­sent a pro­to­type data analy­sis plat­form for in­te­grat­ing data col­lec­tion with real time analy­sis at the beam­line. Our ap­pli­ca­tion lever­ages Bluesky in com­bi­na­tion with a flex­i­ble run en­gine to ex­e­cute user con­fig­urable Python-based analy­ses with cus­tomiz­able queue­ing and re­source man­age­ment. We dis­cuss ini­tial demon­stra­tions to sup­port X-ray pho­ton cor­re­la­tion spec­troscopy ex­per­i­ments and fu­ture ef­forts to ex­pand the plat­form’s fea­tures.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUSDSC02  
About • Received ※ 06 October 2023 — Revised ※ 22 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUSDSC07 Web Dashboards for CERN Radiation and Environmental Protection Monitoring SCADA, radiation, monitoring, interface 938
 
  • A. Ledeul, A. Savulescu, G. Segura
    CERN, Meyrin, Switzerland
 
  CERN has de­vel­oped and op­er­ates a SCADA sys­tem for ra­di­a­tion and en­vi­ron­men­tal mon­i­tor­ing, which is used by many users with dif­fer­ent needs and pro­files. To pro­vide tai­lored ac­cess to this con­trol sys­tem¿s data, the CERN’s Oc­cu­pa­tional Health & Safety and En­vi­ron­men­tal Pro­tec­tion (HSE) Unit has de­vel­oped a web-based dash­board ed­i­tor that al­lows users to cre­ate cus­tom dash­boards for data analy­sis. In this paper, we pre­sent a tech­nol­ogy stack com­pris­ing Spring Boot, React, Apache Kafka, Web­Sock­ets, and WebGL that pro­vides a pow­er­ful tool for a web-based pre­sen­ta­tion layer for the SCADA sys­tem. This stack lever­ages Web­Socket for near-real-time com­mu­ni­ca­tion be­tween the web browser and the server. Ad­di­tion­ally, it pro­vides high-per­for­mant, re­li­able, and scal­able data de­liv­ery using low-la­tency data stream­ing with Apache Kafka. Fur­ther­more, it takes ad­van­tage of the GPU’s power with WebGL for data vi­su­al­iza­tion. This web-based dash­board ed­i­tor and the tech­nol­ogy stack pro­vide a faster, more in­te­grated, and ac­ces­si­ble so­lu­tion for build­ing cus­tom dash­boards and an­a­lyz­ing data.  
poster icon Poster TUSDSC07 [1.992 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUSDSC07  
About • Received ※ 04 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 08 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1BCO01 VME2E: VME to Ethernet - Common Hardware Platform for legacy VME Module Upgrade FPGA, Ethernet, hardware, controls 949
 
  • J.P. Jamilkowski
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Tian
    BNL, Upton, New York, USA
 
  Funding: DOE Office of Science
VME ar­chi­tec­ture was de­vel­oped in late 1970s. It has proved to be a rugged con­trol sys­tem hard­ware plat­form for the last four decades. Today the VME hard­ware plat­form is fac­ing four chal­lenges from 1) back­plane com­mu­ni­ca­tion speed bot­tle­neck; 2) com­put­ing power lim­its from cen­tral­ized com­put­ing in­fra­struc­ture; 3) ob­so­les­cence and cost is­sues to sup­port a real-time op­er­at­ing sys­tem; 4) ob­so­les­cence is­sues of the legacy VME hard­ware. The next gen­er­a­tion hard­ware plat­form such as ATCA and mi­croTCA re­quires fun­da­men­tal changes in hard­ware and soft­ware. It also needs large in­vest­ment. For many legacy sys­tem up­grades, this ap­proach is not ap­plic­a­ble. We will dis­cuss an open-source hard­ware plat­form, VME2E (VME to Eth­er­net), which al­lows the one-to-one re­place­ment of legacy VME mod­ule with­out dis­as­sem­bling of the ex­ist­ing VME sys­tem. The VME2E has the VME form fac­tor. It can be in­stalled the ex­ist­ing VME chas­sis, but with­out use the VME back­plane to com­mu­ni­cate with the front-end com­puter and there­fore solves the first three chal­lenges listed above. The VME2E will only take ad­van­tage of two good ben­e­fits from a VME sys­tem: sta­ble power sup­ply which VME2E mod­ule will get from the back­plane, and the cool­ing en­vi­ron­ment. The VME2E will have the most ad­vanced 14nm Xil­inx FPGA SOM with GigE for par­al­lel com­put­ing and high speed com­mu­ni­ca­tion. It has a high pin count (HPC) FPGA mez­za­nine con­nec­tor (FMC) to ben­e­fit the IO daugh­ter boards sup­ply of the FMC ecosys­tem. The VME2E is de­signed as a low cost, open-source com­mon plat­form for legacy VME up­grade.
 
slides icon Slides WE1BCO01 [1.141 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE1BCO01  
About • Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 19 November 2023 — Issued ※ 22 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO04 Improving Observability of the SCADA Systems Using Elastic APM, Reactive Streams and Asynchronous Communication SCADA, controls, monitoring, distributed 1016
 
  • I. Khokhriakov
    University of California, San Diego (UCSD), La Jolla, California, USA
  • V. Mazalova
    CFEL, Hamburg, Germany
  • O. Merkulova
    IK, Moscow, Russia
 
  As mod­ern con­trol sys­tems grow in com­plex­ity, en­sur­ing ob­serv­abil­ity and trace­abil­ity be­comes more chal­leng­ing. To meet this chal­lenge, we pre­sent a novel so­lu­tion that seam­lessly in­te­grates with mul­ti­ple SCADA frame­works to pro­vide end-to-end vis­i­bil­ity into com­plex sys­tem in­ter­ac­tions. Our so­lu­tion uti­lizes Elas­tic APM to mon­i­tor and trace the per­for­mance of sys­tem com­po­nents, al­low­ing for real-time analy­sis and di­ag­no­sis of is­sues. In ad­di­tion, our so­lu­tion is built using re­ac­tive de­sign prin­ci­ples and asyn­chro­nous com­mu­ni­ca­tion, en­abling it to scale to meet the de­mands of large, dis­trib­uted sys­tems. This pre­sen­ta­tion will de­scribe our ap­proach and dis­cuss how it can be ap­plied to var­i­ous use cases, in­clud­ing par­ti­cle ac­cel­er­a­tors and other sci­en­tific fa­cil­i­ties. We will also dis­cuss the ben­e­fits of our so­lu­tion, such as im­proved sys­tem ob­serv­abil­ity and trace­abil­ity, re­duced down­time, and bet­ter re­source al­lo­ca­tion. We be­lieve that our ap­proach rep­re­sents a sig­nif­i­cant step for­ward in the de­vel­op­ment of mod­ern con­trol sys­tems, and we look for­ward to shar­ing our work with the com­mu­nity at ICALEPCS 2023.
* Igor Khokhriakov et al,
A novel solution for controlling hardware components of accelerators and beamlines
JOURNAL OF SYNCHROTRON RADIATION · Apr 5, 2022
 
slides icon Slides WE3BCO04 [3.377 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO04  
About • Received ※ 29 September 2023 — Revised ※ 14 November 2023 — Accepted ※ 19 December 2023 — Issued ※ 22 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP013 EPICS Integration for Rapid Control Prototyping Hardware from Speedgoat EPICS, hardware, controls, interface 1317
 
  • L. Rossa, M. Brendike
    HZB, Berlin, Germany
 
  To ex­ploit the full po­ten­tial of fourth gen­er­a­tion Syn­chro­tron Sources, new beam­line in­stru­men­ta­tion is in­creas­ingly de­vel­oped with a mecha­tron­ics ap­proach. [*,**,***] Im­ple­ment­ing this ap­proach raises the need for Rapid Con­trol Pro­to­typ­ing (RCP) and Hard­ware-In-the-Loop (HIL) sim­u­la­tions. To in­te­grate such RCP and HIL sys­tems into every-day beam­line op­er­a­tion we de­vel­oped an in­ter­face from a Speed­goat real-time per­for­mance ma­chine - pro­gram­ma­ble via MAT­LAB Simulink - to EPICS. The in­ter­face was de­vel­oped to be sim­ple to use and still flex­i­ble. The Simulink soft­ware de­vel­oper uses ded­i­cated Simulink-blocks to ex­port model in­for­ma­tion and real-time data into struc­tured UDP Eth­er­net frames. The cor­re­spond­ing EPICS IOC lis­tens to the UDP frames and auto-gen­er­ates a cor­re­spond­ing data­base file to fit the data-stream from the Simulink model. The EPICS IOC can run on ei­ther a beam­line mea­sure­ment PC or to keep things spa­tially close on a mini PC (such as a Rasp­berry Pi) at­tached to the Speed­goat ma­chine. An overview of the in­ter­face idea, ar­chi­tec­ture and im­ple­men­ta­tion, to­gether with some sim­ple ex­am­ples will be pre­sented.
* https://doi.org/10.18429/JACoW-MEDSI2016-MOPE19
** https://doi.org/10.18429/JACoW-ICALEPCS2019-TUCPL05
*** https://orbi.uliege.be/bitstream/2268/262789/1/TUIO02.pdf
 
poster icon Poster THPDP013 [1.143 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP013  
About • Received ※ 29 September 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)