Keyword: storage-ring
Paper Title Other Keywords Page
MO3AO01 Optimisation of the Touschek Lifetime in Synchrotron Light Sources Using Badger sextupole, injection, operation, quadrupole 108
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, L. Hoummi, D. Lacoste, A. Le Meillour, T.P. Perron, S.M. White
    ESRF, Grenoble, France
  • I.V. Agapov, M. Böse, J. Keil, L. Malina, E.S.H. Musa, B. Veglia
    DESY, Hamburg, Germany
  • A.L. Edelen, P. Raimondi, R.J. Roussel, Z. Zhang
    SLAC, Menlo Park, California, USA
  • T. Hellert
    LBNL, Berkeley, California, USA
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871072
Bad­ger* is a soft­ware de­signed to eas­ily ac­cess sev­eral op­ti­miz­ers (sim­plex, RCDS**, bayesian op­ti­miza­tion, etc.) to solve a given mul­ti­di­men­sional min­i­miza­tion/max­i­miza­tion task. The Bad­ger soft­ware is very flex­i­ble and easy to adapt to dif­fer­ent fa­cil­i­ties. In the frame­work of the EU­R­I­ZON Eu­ro­pean pro­ject Bad­ger was used for the EBS and PE­TRAIII stor­age rings in­ter­fac­ing with the Tango and TINE con­trol sys­tem. Among other tests, the op­ti­mi­sa­tions of Tou­schek life­time was per­formed and com­pared with the re­sults ob­tained with ex­ist­ing tools dur­ing ma­chine ded­i­cated times.
* Z. Zhang et al., "Badger: The Missing Optimizer in ACR", doi:10.18429/JACoW-IPAC2022-TUPOST058
** X. Huang, "Robust simplex algorithm for online optimization", 10.1103/PhysRevAccelBeams.21.104601
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO01  
About • Received ※ 28 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 27 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3AO02 Implementation of Model Predictive Control for Slow Orbit Feedback Control in MAX IV Accelerators Using PyTango Framework controls, feedback, TANGO, operation 116
 
  • C. Takahashi, J. Breunlin, A. Freitas, M. Sjöström
    MAX IV Laboratory, Lund University, Lund, Sweden
  • P. Giselsson, E. Jensen Gassheld, M. Karlsson
    Lund University, Lund, Sweden
 
  Achiev­ing low emit­tance and high bright­ness in mod­ern light sources re­quires sta­ble beams, which are com­monly achieved through feed­back so­lu­tions. The MAX IV light source has two feed­back sys­tems, Fast Orbit Feed­back (FOFB) and Slow Orbit Feed­back (SOFB), op­er­at­ing in over­lap­ping fre­quency re­gions. Cur­rently in MAX IV, a gen­eral feed­back de­vice im­ple­mented in Py­Tango is used for slow orbit and tra­jec­tory cor­rec­tion, but an MPC con­troller for the beam orbit has been pro­posed to im­prove sys­tem ro­bust­ness. The con­troller uses it­er­a­tive op­ti­mi­sa­tion of the sys­tem model, cur­rent mea­sure­ments, dy­namic states and sys­tem con­straints to cal­cu­late changes in the con­trolled vari­ables. The new de­vice im­ple­ments the MPC model ac­cord­ing to the beam orbit re­sponse ma­trix, sub­scribes to change events on all beam po­si­tion at­trib­utes and up­dates the con­trol sig­nal given to the slow mag­nets with a 10 Hz rate. This pro­ject aims to im­prove sys­tem ro­bust­ness and re­duce ac­tu­a­tor sat­u­ra­tion. The use of Py­Tango sim­pli­fies the im­ple­men­ta­tion of the MPC con­troller by al­low­ing ac­cess to high-level op­ti­mi­sa­tion and con­trol pack­ages. This pro­ject will con­tribute to the de­vel­op­ment of a high-qual­ity feed­back con­trol sys­tem for MAX IV ac­cel­er­a­tors.  
slides icon Slides MO3AO02 [4.234 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO02  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP019 Operation of the ESR Storage Ring with the LSA Control System accumulation, experiment, operation, injection 534
 
  • S.A. Litvinov, R. Hess, B. Lorentz, M. Steck
    GSI, Darmstadt, Germany
 
  The LHC Soft­ware Ar­chi­tec­ture (LSA) has been ap­plied to the ac­cel­er­a­tor com­plex GSI, Ger­many as a new con­trol sys­tem. The Ex­per­i­men­tal Stor­age Ring (ESR) was recom­mis­sioned with the LSA and dif­fer­ent ac­cel­er­a­tor and physics ex­per­i­ments were per­formed in the last sev­eral years. The overview of the ESR per­for­mance will be pre­sented here. The fea­tures and chal­lenges of the op­er­a­tion with LSA sys­tem will be out­lined as well.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP019  
About • Received ※ 06 October 2023 — Revised ※ 29 November 2023 — Accepted ※ 20 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP020 Summary Report on Machine Learning-Based Applications at the Synchrotron Light Source Delta injection, laser, controls, synchrotron 537
 
  • D. Schirmer, S. Khan, A. Radha Krishnan
    DELTA, Dortmund, Germany
 
  In re­cent years, sev­eral con­trol sys­tem ap­pli­ca­tions using ma­chine learn­ing (ML) tech­niques have been de­vel­oped and tested to au­to­mate the con­trol and op­ti­miza­tion of the 1.5 GeV syn­chro­tron ra­di­a­tion source DELTA. These ap­pli­ca­tions cover a wide range of tasks, in­clud­ing elec­tron beam po­si­tion cor­rec­tion, work­ing point con­trol, chro­matic­ity ad­just­ment, in­jec­tion process op­ti­miza­tion, as well as CHG-spec­tra (co­her­ent har­monic gen­er­a­tion) analy­sis. Var­i­ous ma­chine learn­ing tech­niques have been used to im­ple­ment these pro­jects. This re­port pro­vides an overview of these pro­jects, sum­ma­rizes the cur­rent re­sults, and in­di­cates ideas for fu­ture im­prove­ments.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP020  
About • Received ※ 04 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 13 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP030 Integration of an Optimizer Framework into the Control System at KARA controls, injection, interface, framework 570
 
  • C. Xu, E. Blomley, A.-S. Müller, A. Santamaria Garcia
    KIT, Karlsruhe, Germany
  • M. Zhang
    PU, Princeton, New Jersey, USA
 
  Tun­ing par­ti­cle ac­cel­er­a­tors is not straight­for­ward, as they de­pend on a large num­ber of non-lin­early cor­re­lated pa­ra­me­ters that, for ex­am­ple, drift over time. In re­cent years ad­vanced nu­mer­i­cal op­ti­miza­tion tools have been de­vel­oped to as­sist human op­er­a­tors in tun­ing tasks. A proper in­ter­face be­tween the op­ti­miz­ers and the con­trol sys­tem will en­cour­age their daily use by the ac­cel­er­a­tor op­er­a­tors. In this con­tri­bu­tion, we pre­sent our lat­est progress in in­te­grat­ing an op­ti­mizer frame­work into the con­trol sys­tem of the KARA stor­age ring at KIT, al­low­ing the au­to­matic tun­ing meth­ods to be ap­plied for rou­tine tasks.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP030  
About • Received ※ 06 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 10 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP001 New Generation Qt Control Components for Hi Level Software controls, EPICS, framework, TANGO 1291
 
  • G. Strangolino, G. Gaio, R. Passuello
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  A new gen­er­a­tion of Qt graph­i­cal com­po­nents, namely cumbia-qt­con­trols-ng is under de­vel­op­ment at ELET­TRA. A com­mon en­gine al­lows each com­po­nent to be ren­dered on tra­di­tional QWid­gets and scal­able QGraph­ic­sItems alike. The lat­ter tech­nol­ogy makes it pos­si­ble to in­te­grate live con­trols with sta­tic SVG in order to re­al­ize any kind of syn­op­tic with touch and scal­ing ca­pa­bil­i­ties. A plug­gable zoomer can be in­stalled on any wid­get or graph­ics item. Apply nu­meric con­trols, Carte­sian and Cir­cu­lar (Radar) plots are the first com­po­nents re­al­ized.  
poster icon Poster THPDP001 [0.935 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP001  
About • Received ※ 29 September 2023 — Revised ※ 14 November 2023 — Accepted ※ 20 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP010 Update on the EBS Storage Ring Beam Dynamics Digital Twin controls, optics, TANGO, SRF 1306
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, L. Hoummi, N. Leclercq, T.P. Perron, J.L. Pons, S.M. White
    ESRF, Grenoble, France
 
  The EBS stor­age ring con­trol sys­tem is presently paired with an elec­tron beam dy­nam­ics dig­i­tal twin (the EBS con­trol sys­tem sim­u­la­tor, EBSS*). The EBSS re­pro­duces many of the beam dy­nam­ics re­lated quan­ti­ties rel­e­vant for ma­chine op­er­a­tion. This dig­i­tal twin is used for the prepa­ra­tion and debug of soft­ware to de­ploy for op­er­a­tion. The EBSS is presently work­ing only for the main stor­age ring and it is not di­rectly con­nected to the ma­chine op­er­a­tion but works in par­al­lel and on de­mand. We pre­sent here the steps taken to­wards an on-line con­tin­u­ous use of the EBSS to mon­i­tor the evo­lu­tion of not di­rectly ob­serv­able pa­ra­me­ters such as beam op­tics.
* Simone Liuzzo, et al. The ESRF-EBS Simulator: A Commissioning Booster. 18th ICALEPCS, Oct 2021, Shanghai, China. MOPV012
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP010  
About • Received ※ 27 September 2023 — Revised ※ 25 October 2023 — Accepted ※ 10 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP016 Full Stack Performance Optimizations for FAIR Operation controls, operation, timing, hardware 1325
 
  • A. Schaller, H.C. Hüther, R. Mueller, A. Walter
    GSI, Darmstadt, Germany
 
  In the last beam times, op­er­a­tions re­ported a lack of per­for­mance and long wait­ing times when per­form­ing sim­ple changes of the ma­chines’ set­tings. To en­sure per­for­mant op­er­a­tion of the fu­ture Fa­cil­ity for An­tipro­ton and Ion Re­search (FAIR), the "Task Force Per­for­mance" (TFP) was formed in mid-2020, which aimed at op­ti­miz­ing all in­volved Con­trol Sys­tem com­po­nents. Base­line mea­sure­ments were recorded for dif­fer­ent sce­nar­ios to com­pare and eval­u­ate the steps taken by the TFP. These mea­sure­ments con­tained data from all un­der­ly­ing sys­tems, from hard­ware de­vice data sup­ply over net­work traf­fic up to user in­ter­face ap­pli­ca­tions. In­di­vid­ual groups searched, de­tected and fixed per­for­mance bot­tle­necks in their com­po­nents of the Con­trol Sys­tem stack, and the in­ter­faces be­tween these in­di­vid­ual com­po­nents were in­spected as well. The find­ings are pre­sented here.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP016  
About • Received ※ 04 October 2023 — Revised ※ 29 November 2023 — Accepted ※ 13 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1BCO04 The Controls and Science IT Project for the SLS 2.0 Upgrade controls, network, EPICS, experiment 1616
 
  • A. Ashton, H.-H. Braun, S. Fries, X. Yao, E. Zimoch
    PSI, Villigen PSI, Switzerland
 
  Op­er­a­tion of the Swiss Light Source (SLS) at the Paul Scher­rer In­stitue (PSI) in Switzer­land began in 2000 and it quickly be­came one of the most suc­cess­ful syn­chro­tron ra­di­a­tion fa­cil­i­ties world­wide, pro­vid­ing aca­d­e­mic and in­dus­try users with a suite of ex­cel­lent beam­lines cov­er­ing a wide range of meth­ods and ap­pli­ca­tions. To main­tain the SLS at the fore­front of syn­chro­tron user fa­cil­i­ties and to ex­ploit all of the im­prove­ment op­por­tu­ni­ties, PSI pre­pared a major up­grade pro­ject for SLS, named SLS 2.0. The Con­trols and Sci­ence IT (CaSIT) sub­pro­ject was es­tab­lished to help in­sti­gate a pro­ject man­age­ment struc­ture to fa­cil­i­tate new con­cepts, in­creased com­mu­ni­ca­tion, and clar­ify bud­getary re­spon­si­bil­ity. This ar­ti­cle fo­cusses on the progress being made to ex­ploit the cur­rent tech­no­log­i­cal op­por­tu­ni­ties of­fered by a break in op­er­a­tions whilst tak­ing into con­sid­er­a­tion fu­ture growth op­por­tu­ni­ties and re­al­is­tic op­er­a­tional sup­port within an aca­d­e­mic re­search fa­cil­ity.  
slides icon Slides FR1BCO04 [6.389 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR1BCO04  
About • Received ※ 05 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 20 November 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR2AO05 Python Library for Simulated Commissioning of Storage-Ring Accelerators MMI, lattice, simulation, closed-orbit 1637
 
  • L. Malina, I.V. Agapov, J. Keil, E.S.H. Musa, B. Veglia
    DESY, Hamburg, Germany
  • N. Carmignani, L.R. Carver, L. Hoummi, S.M. Liuzzo, T.P. Perron, S.M. White
    ESRF, Grenoble, France
  • T. Hellert
    LBNL, Berkeley, California, USA
 
  Sim­u­la­tions of the com­mis­sion­ing pro­ce­dure be­came vital to the stor­age-ring lat­tice de­sign process. The achiev­able tol­er­ances on lat­tice im­per­fec­tions, such as equip­ment mis­align­ments or mag­net gra­di­ent er­rors, would, with­out cor­rec­tion, pro­hibit reach­ing the de­sign pa­ra­me­ters. We pre­sent a Python li­brary which in­cludes an ex­ten­sive set of error sources in the ac­cel­er­a­tor lat­tice and pro­vides a va­ri­ety of cor­rec­tion al­go­rithms to com­mis­sion a stor­age ring. The un­der­ly­ing beam dy­nam­ics sim­u­la­tions are per­formed with pyAT. This pro­ject builds upon pre­vi­ous works and ex­pands them in the di­rec­tion of re­al­is­tic con­trol room ex­pe­ri­ence and soft­ware main­tain­abil­ity. The per­for­mance is demon­strated using ex­am­ple com­mis­sion­ing stud­ies, and fur­ther de­vel­op­ment plans are dis­cussed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2AO05  
About • Received ※ 06 October 2023 — Revised ※ 27 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)