JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
TY - CONF AU - Li, F.N. AU - Chen, K.C. AU - Guo, Z. AU - He, Q.Y. AU - Lin, C. AU - Wang, Q. AU - Xia, Y. AU - Zang, M.X. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Applications of Artificial Intelligence in Laser Accelerator Control System J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Ultra-intense laser-plasma interactions can produce TV/m acceleration gradients, making them promising for compact accelerators. Peking University is constructing a proton radiotherapy system prototype based on PW laser accelerators, but transient processes challenge stability control, critical for medical applications. This work demonstrates artificial intelligence’s (AI) application in laser accelerator control systems. To achieve micro-precision alignment between the ultra-intense laser and target, we propose an automated positioning program using the YOLO algorithm. This real-time method employs a convolutional neural network, directly predicting object locations and class probabilities from input images. It enables precise, automatic solid target alignment in about a hundred milliseconds, reducing experimental preparation time. The YOLO algorithm is also integrated into the safety interlocking system for anti-tailing, allowing quick emergency response. The intelligent control system also enables convenient, accurate beam tuning. We developed high-performance virtual accelerator software using "OpenXAL" and GPU-accelerated multi-particle beam transport simulations. The software allows real-time or custom parameter simulations and features control interfaces compatible with optimization algorithms. By designing tailored objective functions, desired beam size and distribution can be achieved in a few iterations. PB - JACoW Publishing CP - Geneva, Switzerland SP - 372 EP - 378 KW - laser KW - target KW - controls KW - simulation KW - experiment DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO13 UR - https://jacow.org/icalepcs2023/papers/tumbcmo13.pdf ER -