Paper | Title | Other Keywords | Page |
---|---|---|---|
TUPDP010 | The Laser Megajoule Facility Status Report | laser, target, experiment, controls | 498 |
|
|||
The Laser MegaJoule, a 176-beam laser facility developed by CEA, is located near Bordeaux. It is part of the French Simulation Program, which combines improvement of theoretical models used in various domains of physics and high performance numerical simulation. It is designed to deliver about 1.4 MJ of energy on targets, for high energy density physics experiments, including fusion experiments. The LMJ technological choices were validated on the LIL, a scale-1 prototype composed of 1 bundle of 4-beams. The first bundle of 8-beams was commissioned in October 2014 with the realisation of the first experiment on the LMJ facility. The operational capabilities are increasing gradually every year until the full completion by 2025. By the end of 2023, 18 bundles of 8-beams will be assembled and 15 bundles are expected to be fully operational. In this paper, a presentation of the LMJ Control System architecture is given. A description of the integration platform and simulation tools, located outside the LMJ facility, is given. Finally, a review of the LMJ status report is detailed with an update on the LMJ and PETAL activities.
LMJ: Laser MegaJoule CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives LIL : Ligne d’Intégration Laser |
|||
Poster TUPDP010 [1.200 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP010 | ||
About • | Received ※ 28 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 08 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPDP103 | Interlock Super Agent : Enhancing Machine Efficiency and Performance at CERN’s Super Proton Synchrotron | operation, software, proton, controls | 799 |
|
|||
In the CERN Super Proton Synchrotron (SPS), finding the source of an interlock signal has become increasingly unmanageable due to the complex interdependencies between the agents in both the beam interlock system (BIS) and the software interlock system (SIS). This often leads to delays, with the inefficiency in diagnosing beam stops impacting the overall performance of the accelerator. The Interlock Super Agent (ISA) was introduced to address this challenge. It traces the interlocks responsible for beam stops, regardless of whether they originated in BIS or SIS. By providing a better understanding of interdependencies, ISA significantly improves machine efficiency by reducing time for diagnosis and by documenting such events through platforms such as the Accelerator Fault Tracking system. The paper will discuss the practical implementation of ISA and its potential application throughout the CERN accelerator complex. | |||
Poster TUPDP103 [4.719 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP103 | ||
About • | Received ※ 25 September 2023 — Revised ※ 11 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 13 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPDP129 | The LCLS-II Experiment Controls Preemptive Machine Protection System | PLC, controls, interface, machine-protect | 886 |
|
|||
Funding: This work is supported by Department of Energy contract DE-AC02-76SF00515. The LCLS-II Preemptive Machine Protection System (PMPS) safeguards diagnostics, optics, beam-shaping components and experiment apparatus from damage by excess XFEL average power and single-shots. The dynamic nature of these systems requires a somewhat novel approach to a machine protection system design, relying more heavily on preemptive interlocks and automation to avoid mismatches between device states and beam parameters. This is in contrast to reactive machine protection systems. Safe beam parameter sets are determined from the combination of all integrated devices using a hierarchical arrangement and all state changes are held until beam conditions are assured to be safe. This machine protection system design utilizes the Beckhoff industrial controls platform and EtherCAT, and is woven into the LCLS subsystem controllers as a code library and standardized hardware interface. |
|||
Poster TUPDP129 [1.146 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP129 | ||
About • | Received ※ 25 October 2023 — Revised ※ 01 November 2023 — Accepted ※ 30 November 2023 — Issued ※ 16 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WE3AO02 | High Fidelity Pulse Shaping for the National Ignition Facility | experiment, target, timing, laser | 1058 |
|
|||
Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 The National Ignition Facility (NIF) is the world’s most energetic laser capable of delivering 2.05MJ of energy with peak powers up to 500 terawatts on targets a few mms in diameter. This enables extreme conditions in temperature and pressure allowing a wide variety of exploratory experiments from triggering fusion ignition to emulating temperatures at the center of stars or pressures at the center of giant planets. The capability enabled the groundbreaking results of December 5th, 2022 when scientific breakeven in fusion was demonstrated with a target gain of 1.5. A key aspect of supporting various experiments at NIF is the ability to custom shape the pulses of the 48 quads independently with high fidelity as needed by the experimentalists. For more than 15 years, the Master Oscillator Room’s (MOR) pulse shaping system has served NIF well. However, a pulse shaping system that would provide higher shot-to-shot stability, better power balance and accuracy across the 192 beams is required for future NIF experiments including ignition. The pulse shapes requested vary drastically at NIF which led to challenging requirements for the hardware, timing and closed loop shaping systems. In the past two years, a High-Fidelity Pulse Shaping System was designed, and a proof-of-concept system was shown to meet all requirements. This talk will discuss design challenges, solutions and how modernization of the pulse shaping hardware helped simple control algorithms meet the stringent requirements set by the experimentalists. LLNL Release Number: LLNL-ABS-848060 |
|||
Slides WE3AO02 [6.678 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3AO02 | ||
About • | Received ※ 04 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 22 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THMBCMO26 | FRIB Beam Power Ramp Process Checker at Chopper Monitor | target, controls, FPGA, monitoring | 1256 |
|
|||
Funding: Work supporting the U.S. Dept. of Energy Office of Science under Cooperative Agreement DE-SC0023633 Chopper in the low energy beam line is a key ele-ment to control beam power in FRIB. As appropriate functioning of chopper is critical for machine protec-tion for FRIB, an FPGA-based chopper monitoring system was developed to monitor the beam gated pulse at logic level, deflection high voltage level, and in-duced charge/discharge current levels, and shut off beam promptly at detection of a deviation outside tolerance. Once FRIB beam power reaches a certain level, a cold start beam ramp mode in which the pulse repetition frequency and pulse width are linearly ramped up becomes required to mitigate heat shock to the target at beam restart. Chopper also needs to gen-erate a notch in every machine cycle of 10 ms that is used for beam diagnostics. To overcome the challeng-es of monitoring such a ramping process and meeting the response time requirement of shutting off beam, two types of process checkers, namely, monitoring at the pulse level and monitoring at the machine cycle level, have been implemented. A pulse look ahead algorithm to calculate the expected range of frequency dips and rises was developed, and a simplified mathe-matical model suitable for multiple ramp stages was built to calculate expected time parameters of accumu-lated pulse on time within a given machine cycle. Both will be discussed in detail in this paper, followed by simulation results with FPGA test bench and actual instrument test results with the beam ramp process. |
|||
Slides THMBCMO26 [0.389 MB] | |||
Poster THMBCMO26 [3.028 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO26 | ||
About • | Received ※ 04 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 24 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPDP012 | Evolution of the Laser Megajoule Timing System | laser, timing, experiment, target | 1312 |
|
|||
The Laser MegaJoule (LMJ), a 176-beam laser facility developed by CEA, is located at the CEA CESTA site near Bordeaux. The LMJ facility is part of the French Simulation Program, which combines improvement of theoretical models and data used in various fields of physics, high performance numerical simulations and experimental validation. It is designed to deliver about 1.4 MJ of energy on targets, for high energy density physics experiments, including fusion experiments. With 120 operational beams at the end of 2023, operational capabilities are gradually increasing until the full completion of the LMJ facility by 2025. To verify the synchronization of the precise delay generators, used on each bundle, a new timing diagnostic has been designed to observe the 1w and 3w fiducial signals. Meanwhile, due to electronic obsolescence, a new modified prototype precise of a delay generator, with ’new and old channels’, has been tested and compared. In this paper, a review of the LMJ synchronization report is given with a description of the first timing diagnostic as well as an overview of the LMJ delay generator obsolescence update. It also presents some leads for a future timing system.
LMJ: Laser MegaJoule CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives |
|||
Poster THPDP012 [3.535 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP012 | ||
About • | Received ※ 10 October 2023 — Revised ※ 14 November 2023 — Accepted ※ 19 December 2023 — Issued ※ 21 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPDP041 | The RF Protection Interlock System Prototype Verification | LLRF, FPGA, interface, software | 1406 |
|
|||
The Radio Frequency Protection Interlock system plays vital role in the LLRF related/dependent accelerator sections Protection. It’s main role is to collect information from number different sensors and indicators around nearest cavities and cryomodule and provide instant RF signal termination in case of safety thresholds violation. This submission describes newly designed RFPI system tailored to the Proton Improvement Plan II (PIP-II) requirements. The proof of concept prototype of this system has been build. The paper includes also the CMTF environment evaluation tests results and findings as an input to the next full-scope prototype design. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP041 | ||
About • | Received ※ 06 October 2023 — Revised ※ 26 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 13 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPDP087 | LCLS-II Controls Software Architecture for the Wire Scan Diagnostics | controls, FPGA, software, electron | 1556 |
|
|||
Funding: This work was supported by Department of Energy, Office of Basic Energy Sciences, contract DE-AC02-76SF00515 The Super Conducting (SC) Linac Coherent Light Source II (LCLS-II) facility at SLAC is capable of delivering an electron beam at a fast rate of up to 1MHz. The high-rate necessitates the processing algorithms and data exchanges with other high-rate systems to be implemented with FPGA technology. For LCLS-II, SLAC has deployed a common platform solution (hardware, firmware, software) which is used by timing, machine protection and diagnostics systems. The wire scanner diagnostic system uses this solution to acquire beam synchronous time-stamped readings, of wire scanner position and beam loss during the scan, for each individual bunch. This paper explores the software architecture and control system integration for LCLS-II wire scanners using the common platform solution. |
|||
Poster THPDP087 [1.079 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP087 | ||
About • | Received ※ 06 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 09 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FR2AO04 | A Physics-Based Simulator to Facilitate Reinforcement Learning in the RHIC Accelerator Complex | cavity, controls, booster, simulation | 1630 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The successful use of machine learning (ML) in particle accelerators has greatly expanded in recent years; however, the realities of operations often mean very limited machine availability for ML development, impeding its progress in many cases. This paper presents a framework for exploiting physics-based simulations, coupled with real machine data structure, to facilitate the investigation and implementation of reinforcement learning (RL) algorithms, using the longitudinal bunch-merge process in the Booster and Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) as examples. Here, an initial fake wall current monitor (WCM) signal is fed through a noisy physics-based model simulating the behavior of bunches in the accelerator under given RF parameters and external perturbations between WCM samples; the resulting output becomes the input for the RL algorithm and subsequent pass through the simulated ring, whose RF parameters have been modified by the RL algorithm. This process continues until an optimal policy for the RF bunch merge gymnastics has been learned for injecting bunches with the required intensity and emittance into the Relativistic Heavy Ion Collider (RHIC), according to the physics model. Robustness of the RL algorithm can be evaluated by introducing other drifts and noisy scenarios before the algorithm is deployed and final optimization occurs in the field. |
|||
Slides FR2AO04 [2.694 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2AO04 | ||
About • | Received ※ 04 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 16 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||