Keyword: linac
Paper Title Other Keywords Page
MO1BCO03 LCLS-II Accelerator Control System Status controls, EPICS, MMI, undulator 12
 
  • D. Rogind, S. Kwon
    SLAC, Menlo Park, California, USA
 
  Funding: US DOE
The Linac Coherent Light Source complex at the SLAC National Accelerator Laboratory has been upgraded to add a new superconducting accelerator with beam rates up to 1MHz. Though the majority of the more than twenty accelerator control systems are based on LCLS designs, to accommodate the increase in repetition rate from 120Hz to 1MHz, many of the diagnostics and global control systems are upgraded to high performance platforms with standalone CPUs running linuxRT to host the EPICS based controls. With installation and checkouts for control systems completing in 2022, the phased approach to integration and commissioning recently completed with demonstration of the threshold key performance parameters and first light occurring in the Summer of 2023. This paper provides an overview of the LCLS-II accelerator control system architecture, upgrades, the multi-year installation, checkout, integration, commissioning, and lessons learned.
 
slides icon Slides MO1BCO03 [2.380 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO1BCO03  
About • Received ※ 02 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 19 December 2023 — Issued ※ 21 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU1BCO05 Model Driven Reconfiguration of LANSCE Tuning Methods controls, beam-transport, DTL, LEBT 267
 
  • C.E. Taylor, P.M. Anisimov, S.A. Baily, E.-C. Huang, H.L. Leffler, L. Rybarcyk, A. Scheinker, H.A. Watkins, E.E. Westbrook, D.D. Zimmermann
    LANL, Los Alamos, New Mexico, USA
 
  Funding: National Nuclear Security Administration (NNSA)
This work presents a review of the shift in tuning methods employed at the Los Alamos Neutron Science Center (LANSCE). We explore the tuning categories and methods employed in four key sections of the accelerator, namely the Low-Energy Beam Transport (LEBT), the Drift Tube Linac (DTL), the side-Coupled Cavity Linac (CCL), and the High-Energy Beam Transport (HEBT). The study additionally presents the findings of employing novel software tools and algorithms to enhance each domain’s beam quality and performance. This study showcases the efficacy of integrating model-driven and model-independent tuning techniques, along with acceptance and adaptive tuning strategies, to enhance the optimization of beam delivery to experimental facilities. The research additionally addresses the prospective strategies for augmenting the control system and diagnostics of LANSCE.
*R.W. Garnett, J. Phys.: Conf. Ser. 1021 012001
**A. Scheinker, Rev. ST Accel. Beams 16 102803 2013
***R. Keller, Proc of Part Accel Conf
****M. Oothoudt, Proc of Part Accel Conf, 2003, v4
 
slides icon Slides TU1BCO05 [2.886 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU1BCO05  
About • Received ※ 06 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 12 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO11 Upgrading and Adapting to CS-Studio Phoebus at Facility for Rare Isotope Beams controls, operation, interface, EPICS 364
 
  • T. Ashwarya, M. Ikegami, J. LeTourneau, A.C. Morton
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
For more than a decade, the Eclipse-based Control System Studio has provided FRIB with a rich user interface to its EPICS-based control system. At FRIB, we use the Alarm Handler, BOY Display Manager, Scan Monitor/Editor, Channel Client, Save-and-Restore, and Data Browser to monitor and control various parts of the beamline. Our engineers have developed over 3000 displays using the BOY display manager mapping various segments and areas of the FRIB beamline. CS-Studio Phoebus is the latest next-generation upgrade to the Eclipse-based CS-Studio, which is based on the modern JavaFX-based graphics and aims toward providing existing functionalities and more. FRIB has already transitioned away from the old BEAST alarm servers to the new Kafka-based Phoebus alarm servers which have been monitoring thousands of our EPICS PVs with its robust monitoring and notifying capabilities. We faced certain challenges with conversion of FRIB’s thousands of displays and to address those we deployed scripts to help the bulk conversion of screens with automated mapping between BOY and Display Builder and also continually improved the Phoebus auto-conversion tool. This paper details the ongoing transition of FRIB from Eclipse-based CS-Studio to Phoebus and various adaptations and solutions that we used to ease this transition for our users. Moving to the new Phoebus-based services and client have provided us with an opportunity to rectify and improve on certain issues known to have existed with Eclipse-based CS-Studio and its services.
 
slides icon Slides TUMBCMO11 [0.872 MB]  
poster icon Poster TUMBCMO11 [2.190 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO11  
About • Received ※ 03 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 30 November 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP018 About the New Linear Accelerator Control System at GSI controls, operation, timing, software 529
 
  • P. Gerhard
    GSI, Darmstadt, Germany
 
  The first accelerator at GSI, UNILAC, went into operation in the early 1970s. Today, UNILAC is a small accelerator complex, consisting of several ion sources, injector and main linacs comprising 23 RF cavities, several strippers and other instrumentation, serving a number of experimental areas and the synchrotron SIS18. Three ion species can be provided at different energies simultaneously in a fast time multiplex scheme, two at a time. The UNILAC is going to be the heavy ion injector linac for FAIR, supported by a dedicated proton linac. The current linac control system dates back to the 1990s. It was initiated for SIS18 and ESR, which enlarged GSI at the time, and was retrofitted to the UNILAC. The linear decelerator HITRAP was added in the last decade, while an sc cw linac is under development. Today, SIS18, ESR and lately CRYRING are already operated by a new system based on the LHC Software Architecture LSA, as FAIR will be. In order to replace the outdated linac control system and simplify and unify future operation, a new control system on the same basis is being developed for all GSI linacs. This contribution reports about this venture from a machine physicist point of view.  
poster icon Poster TUPDP018 [2.886 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP018  
About • Received ※ 05 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 14 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP046 Beam Operation for Particle Physics and Photon Science with Pulse-to-Pulse Modulation at KEK Injector Linac injection, operation, experiment, controls 627
 
  • K. Furukawa, M. Satoh
    KEK, Ibaraki, Japan
 
  The electron and positron accelerator complex at KEK offers unique experimental opportunities in the fields of elementary particle physics with SuperKEKB collider and photon science with two light sources. In order to maximize the experimental performances at those facilities the injector LINAC employs pulse-to-pulse modulation at 50 Hz, injecting beams with diverse properties. The event-based control system effectively manages different beam configurations. This injection scheme was initially designed 15 years ago and has been in full operation since 2019. Over the years, quite a few enhancements have been implemented. As the event-based controls are tightly coupled with microwave systems, machine protection systems and so on, their modifications require meticulous planning. However, the diverse requirements from particle physics and photon science, stemming from the distinct nature of those experiments, often necessitate patient negotiation to meet the demands of both fields. This presentation discusses those operational aspects of the multidisciplinary facility.  
poster icon Poster TUPDP046 [2.498 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP046  
About • Received ※ 19 November 2023 — Accepted ※ 10 December 2023 — Issued ※ 11 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP047 Development of Operator Interface Using Angular at the KEK e⁻/e⁺ Injector Linac operation, database, electron, interface 631
 
  • M. Satoh, I. Satake
    KEK, Ibaraki, Japan
  • T. Kudou, S. Kusano
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
 
  At the KEK e⁻/e⁺ injector linac, the first electronic operation logbook system was developed using a relational database in 1995. This logbook system has the capability to automatically record detailed operational status changes. In addition, operators can manually input detailed information about operational problems, which is helpful for future troubleshooting. In 2010, the logbook system was improved with the implementation of a redundant database, an Adobe Flash based frontend, and an image file handling feature. In 2011, the CSS archiver system with PostgreSQL and a new web-based archiver viewer utilizing Adobe Flash. However, with the discontinuation of Adobe Flash support at the end of 2020, it became necessary to develop a new frontend without Flash for both the operation logbook and archiver viewer systems. For this purpose, the authors adopted the Angular framework, which is widely used for building web applications using JavaScript. In this paper, we report the development of operator interfaces using Angular for the injector linac.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP047  
About • Received ※ 05 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP048 The Upgrade of Pulsed Magnet Control System Using PXIe Devices at KEK LINAC controls, EPICS, real-time, operation 635
 
  • D. Wang, M. Satoh
    KEK, Ibaraki, Japan
 
  In the KEK electron-positron injector LINAC, the pulsed magnet control system modulates the magnetic field at intervals of 20 ms, enabling simultaneous injection into four distinct target rings: 2.5 GeV PF, 6.5 GeV PF-AR, 4 GeV SuperKEKB LER, and 7 GeV SuperKEKB HER. This system operates based on a trigger signal delivered from the event timing system. Upon the receiving specified event code, the PXI DAC board outputs a waveform to the pulse driver, which consequently determines the current of the pulsed magnet. The combination of Windows 8.1 and LabVIEW was utilized to implement the control system since 2017. Nonetheless, due to the cessation of support for Windows 8.1, a system upgrade has become imperative. To address this, Linux has been selected as a suitable replacement for Windows and the EPICS driver for PXIe devices is thus required. This manuscript introduces the development of the novel Linux-based pulsed magnet control system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP048  
About • Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 14 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP080 Automated Procedure for Conditioning of Normal Conducting Accelerator Cavities cavity, controls, DTL, vacuum 699
 
  • E. Trachanas, G.S. Fedel, S. Haghtalab, B. Jones, R.H. Zeng
    ESS, Lund, Sweden
  • C. Baltador, L. Bellan, F. Grespan
    INFN/LNL, Legnaro (PD), Italy
  • A. Gaget, O. Piquet
    CEA-DRF-IRFU, France
 
  Radio frequency (RF) conditioning is an essential stage during the preparation of particle accelerator cavities for operation. During this process the cavity field is gradually increased to the nominal parameters enabling the outgassing of the cavity and the elimination of surface defects through electrical arcing. However, this process can be time-consuming and labor-intensive, requiring skilled operators to carefully adjust the RF parameters. This proceeding presents the software tools for the development of an automatized EPICS control application with the aim to accelerate and introduce flexibility to the conditioning process. The results from the conditioning process of the ESS Radio-Frequency Quadrupole (RFQ) and the parallel conditioning of Drift-Tube Linac (DTL) tanks will be presented demonstrating the potential to save considerable time and resources in future RF conditioning campaigns.  
poster icon Poster TUPDP080 [17.411 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP080  
About • Received ※ 04 October 2023 — Accepted ※ 12 December 2023 — Issued ※ 13 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP111 Software and Firmware-Logic Design for the PIP-II Machine Protection System Mode and Configuration Control at Fermilab controls, interface, operation, FPGA 832
 
  • L.R. Carmichael, M.R. Austin, E.R. Harms, R. Neswold, A. Prosser, A. Warner, J.Y. Wu
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The PIP-II Machine Protection System (MPS) requires a dedicated set of tools for configuration control and management of the machine modes and beam modes of the accelerator. The protection system reacts to signals from various elements of the machine according to rules established in a setup database filtered by the program Mode Controller. This is achieved in accordance with commands from the operator and governed by the firmware logic of the MPS. This paper describes the firmware logic, architecture, and implementation of the program mode controller in an EPICs based environment.
 
poster icon Poster TUPDP111 [2.313 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP111  
About • Received ※ 03 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP122 Fast Wire Scanner Motion Control Software Upgrade For LCLS-II controls, software, EPICS, MMI 869
 
  • Z. Huang, N. Balakrishnan, J.D. Bong, M.L. Campell, T.C. Thayer
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy under contract number DE- AC02-76SF00515
LCLS-II is the first XFEL to be based on continuous-wave superconducting accelerator technology (CW-SCRF), with the X-ray pulses at repetition rates of up to 1 MHz. LCLS-II’s wire scanner motion control is based on Aerotech Ensemble controller. The position feedback and the beam loss monitor readings during a wire scan aim to measure the beam profile. To meet the measurement requirements under both low and high beam repetition rates, we redesign the software program for EPICS IOC, Aerotech controller, and develop a new User Interface (UI) based on PyDM. This paper will describe the software development details and the software commissioning result under LCLS-II’s production environment.
 
poster icon Poster TUPDP122 [1.248 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP122  
About • Received ※ 05 October 2023 — Revised ※ 20 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP127 SLAC LINAC Mode Manager Interface interface, timing, undulator, EPICS 882
 
  • T. Summers, C. Bianchini Mattison, M. Gibbs, T.J. Kabana, P. Krejcik, J.A. Mock
    SLAC, Menlo Park, California, USA
 
  With the successful commissioning of the new superconducting (SC) LINAC, the LINAC Coherent Light Source (LCLS) now has the capability of interleaving beams from either the normal conducting (NC) LINAC or the SC LINAC to two different destinations, the soft (SXR) and hard (HXR) x-ray undulator beamlines. A mode manager user interface has been created to manage the beamline configuration to transport beam pulses to multiple destinations, which include the numerous intermediate tune-up dumps and safety dumps between the injectors and the final beam dumps. The mode manager interfaces with the timing system which controls the bunch patterns to the various locations, and the machine protection system which prevents excess beam power from being sent to the wrong destination. This paper describes the implementation method for handling the mode switching, as well as the operator user interface which allows users to graphically select the desired beam paths.  
poster icon Poster TUPDP127 [1.191 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP127  
About • Received ※ 05 October 2023 — Revised ※ 22 October 2023 — Accepted ※ 30 November 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP131 Longitudinal Feedback for the LCLS-II Superconducting Linear Accelerator at SLAC feedback, cavity, controls, electron 895
 
  • C.M. Zimmer, D. Chabot, W.S. Colocho, Y. Ding, J. Nelson
    SLAC, Menlo Park, California, USA
 
  Funding: U.S. Department of Energy under Grant No. DE-AC02-76SF00515
SLAC recently commissioned a new continuous-wave, MHz repetition-rate Superconducting (SC) Linear Accelerator (Linac). This accelerator can produce a 4 GeV electron beam that drives two dedicated Hard and Soft X-ray Undulator lines as part of the Linac Coherent Light Source (LCLS) Free Electron Laser. A new Python-based longitudinal feedback is used to control the electron beam energy and bunch length along the accelerator. This feedback was written to be simple, easily maintainable and easily portable for use on other accelerators or systems as a general-purpose feedback with minimal dependencies. Design and operational results of the feedback will be discussed, along with the Graphical User Interfaces built using Python Display Manager (PyDM).
 
poster icon Poster TUPDP131 [2.221 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP131  
About • Received ※ 29 September 2023 — Revised ※ 12 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUSDSC04 State Machine Operation of Complex Systems operation, vacuum, cryomodule, controls 929
 
  • P.M. Hanlet
    Fermilab, Batavia, Illinois, USA
 
  Operation of complex systems which depend on one or more other systems with many process variables often operate in more than one state. For each state there may be a variety of parameters of interest, and for each of these, one may require different alarm limits, different archiving needs, and have different critical parameters. Relying on operators to reliably change 10s-1000s of parameters for each system for each state is unreasonable. Not changing these parameters results in alarms being ignored or disabled, critical changes missed, and/or possible data archiving problems. To reliably manage the operation of complex systems, such as cryomodules (CMs), Fermilab is implementing state machines for each CM and an over-arching state machine for the PIP-II superconducting linac (SCL). The state machine transitions and operating parameters are stored/restored to/from a configuration database. Proper implementation of the state machines will not only ensure safe and reliable operation of the CMs, but will help ensure reliable data quality. A description of PIP-II SCL, details of the state machines, and lessons learned from limited use of the state machines in recent CM testing will be discussed.  
slides icon Slides TUSDSC04 [6.117 MB]  
poster icon Poster TUSDSC04 [1.031 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUSDSC04  
About • Received ※ 06 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP028 Particle Swarm Optimization Techniques for Automatic Beam Transport at the Lnl Superconducting Linac Accelerators EPICS, controls, cavity, beam-transport 1370
 
  • M. Montis, L. Bellan
    INFN/LNL, Legnaro (PD), Italy
 
  The superconductive quarter wave cavities hadron Lin-ac ALPI is the final acceleration stage at the Legnaro National Laboratories and it is going to be used as re-acceleration line of the radioactive ion beams for the SPES (Selective Production of Exotic Species) project. The Linac was designed in ’90s with the available techniques and it was one of the peak technologies of this kind in Europe at those times, controls included. In the last decade, controls related to all the functional systems composing the accelerator have been ungraded to an EPICS-based solution. This upgrade has given us the opportunity to design and test new possible solutions for automatic beam transport. The work described in this paper is based on the experience and results (in terms of time, costs, and manpower) obtained using Particle Swarm Optimization (PSO) techniques for beam transport optimization applied to the ALPI accelerator. Due to the flexibility and robustness of this method, this tool will be extended to other parts of the facility.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP028  
About • Received ※ 06 September 2023 — Revised ※ 10 October 2023 — Accepted ※ 10 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP033 Multi-User Virtual Accelerator at HEPS for High-Level Application Development and Beam Commissioning MMI, framework, controls, EPICS 1388
 
  • P. Zhu, Y. Jiao, J.Y. Li, N. Li, C. Meng, Y.M. Peng, G. Xu
    IHEP, Beijing, People’s Republic of China
  • X.H. Lu
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  At High Energy Photon Source (HEPS), a multi-user virtual accelerator system has been developed for testing the high-level application (HLA) and simulating the effects of various errors on the results of beam commissioning. The virtual accelerator is based on the Pyapas development framework for HLA and is designed using a client/server (C/S) architecture. It uses Ocelot with custom multipole field models for physical calculations and supports error simulation for various magnet and beam instrumentation and diagnostics devices. Calculation results are sent externally through the EPICS PV channel. The multi-user virtual accelerator system was developed to meet the needs of different users within the same network segment who need to simultaneously call the virtual accelerator for software debugging and simulation research. Each user can open a unique virtual accelerator without affecting others, and can also start different virtual accelerators for different research content. The number of virtual accelerators opened is not limited. The operation of the entire virtual accelerator system can be easily switched on and off like opening an app, greatly facilitating user use. This article provides a detailed description of the design concept and implementation of the multi-user virtual accelerator system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP033  
About • Received ※ 11 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP034 The Application of Pyapas in Linac Beam Commissioning at HEPS MMI, controls, framework, emittance 1391
 
  • X.H. Lu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • H.F. Ji, Y. Jiao, J.Y. Li, N. Li, C. Meng, Y.M. Peng, G. Xu, Y.L. Zhao, P. Zhu
    IHEP, Beijing, People’s Republic of China
 
  The beam commissioning of the Linac at High Energy Photon Source (HEPS) started on March 9th this year. High-level applications (HLAs) based on Pyapas were successfully applied to the beam commissioning. To meet the beam commissioning requirements of the Linac, a series of HLAs were developed, including physics-based control application, PR target data analysis application, emittance measurement application, energy and energy spread measurement application, acceleration phase scanning application, BBA and feedback orbit correction application. Before applying these applications to real beam commissioning, they were tested thoroughly on a virtual accelerator to ensure the correctness of the algorithms and the stability of the application operation. Thanks to the repeated testing on the virtual accelerator, the HLAs of the Linac performed well after being put online, helping the beam commissioning operators to quickly achieve the full-line transmission of the beam and optimize the parameters to the expected values in a short time. This paper will provide a detailed introduction to the application of the relevant HLAs in the Linac beam commissioning at HEPS.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP034  
About • Received ※ 11 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 10 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP082 Teaching an Old Accelerator New Tricks database, controls, experiment, operation 1545
 
  • D.J. Novak, K.J. Bunnell, C. Dickerson, D. Stanton
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. This research used resources of ANLs ATLAS facility, which is a DOE Office of Science User Facility.
The Argonne Tandem Linac Accelerator System (ATLAS) has been a National User Facility since 1985. In that time, many of the systems that help operators retrieve, modify, and store beamline parameters have not kept pace with the advancement of technology. Development of a new method of storing and retrieving beamline parameters resulted in the testing and installation of a time-series database as a potential replacement for the traditional relational database. InfluxDB was selected due to its self-hosted Open-Source version availability as well as the simplicity of installation and setup. A program was written to periodically gather all accelerator parameters in the control system and store them in the time-series database. This resulted in over 13,000 distinct data points, captured at 5-minute intervals. A second test captured 35 channels on a 1-minute cadence. Graphing of the captured data is being done on Grafana, an Open-Source version is available that co-exists well with InfluxDB as the back-end. Grafana made visualizing the data simple and flexible. The testing has allowed for the use of modern graphing tools to generate new insights into operating the accelerator, as well as opened the door to building large data sets suitable for Artificial Intelligence and Machine Learning applications.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP082  
About • Received ※ 10 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR2BCO05 Magnet Information Management System Based on Web Application for the KEK e⁻/e⁺ Injector Linac database, controls, software, operation 1669
 
  • M. Satoh, Y. Enomoto
    KEK, Ibaraki, Japan
  • T. Kudou
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
 
  The KEK injector linac provides e⁻/e⁺ beam to four independent storage rings and a positron damping ring. An accurate information management system of the accelerator components is very important since it is utilized for the beam tuning model. Especially, the incorrect magnet database may cause large deterioration in the quality of beam emittance. In KEK linac, a text-based database system has been used for the information management of magnet system in the long time. It comprises several independent text files which are master information to generate the EPICS database files and the other configuration files required for many linac control software. In this management scheme, it is not easy to access and update any information for the common user except control software expert. For this reason, a new web application-based magnet information management system was developed with the Angular and PHP framework. In the new system, the magnet information can be easily extracted and modified through any web browser for any user. In this paper, we report the new magnet information management system in detail.  
slides icon Slides FR2BCO05 [2.146 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2BCO05  
About • Received ※ 09 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 20 November 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)