Paper | Title | Other Keywords | Page |
---|---|---|---|
MO3BCO07 | Fast Beam Delivery for Flash Irradiations at the HZB Cyclotron | radiation, controls, experiment, proton | 178 |
|
|||
In the context of radiotherapy, Flash irradiations mean the delivery of high dose rates of more than 40 Gy/s, in a short time of less than one second. The expectation of the radio-oncologists are lesser side effects while maintaining the tumour control when using Flash. Clinically acceptable deviations of the applied dose to the described dose are less than 3%. Our accelerator control system is well suited for the standard treatment of ocular melanomas with irradiaton times of 30 s to 60 s. However, it is too slow for the short times required in Flash. Thus, a dedicated beam delivery control system has been developed, permitting irradiation times down to 7 ms with a maximal dose variation of less than 3%. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3BCO07 | ||
About • | Received ※ 24 August 2023 — Revised ※ 07 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 17 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUMBCMO18 | Upgrade of the AGOR Cyclotron Control System at UMCG-PARTREC | controls, PLC, operation, software | 391 |
|
|||
The AGOR cyclotron began development in the late 1980s and was commissioned in 1997. In 2020, when the facility was transferred from the University of Groningen to the University Medical Center Groningen, it marked the start of an upgrade process aimed at ensuring reliable operation. Recent, current and upcoming upgrades and additions encompass the following: Firstly, the current OT network uses custom IO modules based on the outdated Bitbus fieldbus. A pilot study was conducted to evaluate the use of NI CompactRIO-based subracks for analog and digital IO. Also, a similar PLC-based solution is currently under investigation. Secondly, the current control system is based on Vsystem/Vista and alternatives are being investigated. Thirdly, PLCs are upgraded to a newer generation. Fourthly, the current harp electronics and beam current readout electronics both use components that are hard to procure and use a Bitbus interface. New, in-house designs constructed as generic I-V converters eliminate this fieldbus dependency. Fifthly, the present RF slow control employs feedback loops to regulate the RF power and phase. Our new design incorporates functional improvements and condenses several discrete modules into a single cassette, resulting in fewer expected issues with faulty cables and connectors, and enabling us to maintain a larger stock of spares. Finally, the UMCG Radiotherapy department is constructing a new beamline with support from the technical staff at UMCG-PARTREC. The control will be based on NI CompactRIO. | |||
Slides TUMBCMO18 [0.771 MB] | |||
Poster TUMBCMO18 [2.389 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO18 | ||
About • | Received ※ 06 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 30 November 2023 — Issued ※ 01 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPDP039 | Integrating EPICS Control System in VR Environment: Proof of Concept | controls, EPICS, interface, framework | 599 |
|
|||
Preliminary activities were performed to verify the feasibility of Virtual Reality (VR) and Augmented Reality (AR) technologies applied to nuclear physics laboratories, using them for different purposes: scientific dissemination events, data collection, training, and machine maintenance*. In particular, this last field has been fascinating since it lets developers discover the possibility of redesigning the concept of the Human-Machine Interface. Based on the experience, it has been natural to try to provide to the final user (such as system operators and maintainers) with all the set of information describing the machine and control system parameters. For this reason, we tried to integrate the accelerator’s control system environment and VR/AR application. In this contribution, the integration of an EPICS-based control system and VR environment will be described.
* L.Pranovi et al., "VIRTUAL REALITY AND CONTROL SYSTEMS: HOW A 3D SYSTEM LOOKS LIKE", ICALEPCS 2021, Shanghai, China |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP039 | ||
About • | Received ※ 03 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 01 December 2023 — Issued ※ 11 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THSDSC01 | Sector Focused Cyclotron Power Supply Control System Upgrade | controls, power-supply, hardware, distributed | 1578 |
|
|||
The old power supply control system of SFC (Sector Focused Cyclotron) has been in operation for more than a decade. Control system architecture is centralized, and equipment failure rate is getting higher and higher. The new control system uses the EPICS architecture, and the hardware uses Advantech’s APAX modules. The IOC runs on the APAX host and interacts with the module through API functions. The system has been running very stable for several months without failure. | |||
Slides THSDSC01 [0.510 MB] | |||
Poster THSDSC01 [2.136 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THSDSC01 | ||
About • | Received ※ 30 September 2023 — Revised ※ 11 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 09 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||