Keyword: radiation
Paper Title Other Keywords Page
MO3BCO05 Online Models for X-ray Beamlines Using Sirepo-Bluesky synchrotron, optics, electron, controls 165
 
  • J.A. Einstein-Curtis, D.T. Abell, M.V. Keilman, P. Moeller, B. Nash, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • Y. Du, A. Giles, J. Lynch, T. Morris, M. Rakitin, A.L. Walter
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under Award Number DE-SC0020593.
Synchrotron radiation beamlines transport X-rays from the electron beam source to the experimental sample. Precise alignment of the beamline optics is required to achieve adequate beam properties at the sample. This process is often done manually and can be quite time consuming. Further, we would like to know the properties at the sample in order to provide metadata for X-ray experiments. Diagnostics may provide some of this information but important properties may remain unmeasured. In order to solve both of these problems, we are developing tools to create fast online models (also known as digital twins). For this purpose, we are creating reduced models that fit into a hierarchy of X-ray models of varying degrees of complexity and runtime. These are implemented within a software framework called Sirepo-Bluesky* that allows for the computation of the model from within a Bluesky session which may control a real beamline. This work is done in collaboration with NSLS-II. We present the status of the software development and beamline measurements including results from the TES beamline. Finally, we present an outlook for continuing this work and applying it to more beamlines at NSLS-II and other synchrotron facilities around the world.
*https://github.com/NSLS-II/sirepo-bluesky
 
slides icon Slides MO3BCO05 [3.747 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3BCO05  
About • Received ※ 13 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 09 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3BCO07 Fast Beam Delivery for Flash Irradiations at the HZB Cyclotron controls, experiment, proton, cyclotron 178
 
  • J. Bundesmann, A. Denker, G. Kourkafas
    HZB, Berlin, Germany
  • J. Heufelder, A. Weber
    Charite, Berlin, Germany
  • P. Mühldorfer
    BHT, Berlin, Germany
 
  In the context of radiotherapy, Flash irradiations mean the delivery of high dose rates of more than 40 Gy/s, in a short time of less than one second. The expectation of the radio-oncologists are lesser side effects while maintaining the tumour control when using Flash. Clinically acceptable deviations of the applied dose to the described dose are less than 3%. Our accelerator control system is well suited for the standard treatment of ocular melanomas with irradiaton times of 30 s to 60 s. However, it is too slow for the short times required in Flash. Thus, a dedicated beam delivery control system has been developed, permitting irradiation times down to 7 ms with a maximal dose variation of less than 3%.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3BCO07  
About • Received ※ 24 August 2023 — Revised ※ 07 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO4AO02 HydRA: A System-on-Chip to Run Software in Radiation-Exposed Areas software, electron, electronics, FPGA 217
 
  • T. Gingold, G. Daniluk, J. Serrano, T. Włostowski
    CERN, Meyrin, Switzerland
  • M. Rizzi
    PSI, Villigen PSI, Switzerland
 
  In the context of the High-Luminosity LHC project at CERN, a platform has been developed to support groups needing to host electronics in radiation-exposed areas. This platform, called DI/OT, is based on a modular kit consisting of a System Board, Peripheral Boards and a radiation-tolerant power converter, all housed in a standard 3U crate. Groups customise their systems by designing Peripheral Boards and developing custom gateware and software for the System Board, featuring an IGLOO2 flash-based FPGA. It is compulsory for gateware designs to be radiation-tested in dedicated facilities before deployment. This process can be cumbersome and affects iteration time because access to radiation testing facilities is a scarce commodity. To make customisation more agile, we have developed a radiation-tolerant System-on-Chip (SoC), so that a single gateware design, extensively validated, can serve as a basis for different applications by just changing the software running in the processing unit of the SoC. HydRA (Hydra-like Resilient Architecture) features a triplicated RISC-V processor for safely running software in a radiation environment. This paper describes the overall context for the project, and then moves on to provide detailed explanations of all the design decisions for making HydRA radiation-tolerant, including the protection of programme and data memories. Test harnesses are also described, along with a summary of the test results so far. It concludes with ideas for further development and plans for deployment in the LHC.
https://ohwr.org/project/hydra/wikis/home
https://ohwr.org/project/diot/wikis/home
 
slides icon Slides MO4AO02 [11.131 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO4AO02  
About • Received ※ 06 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 27 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU1BCO02 Integrating System Knowledge in Unsupervised Anomaly Detection Algorithms for Simulation-Based Failure Prediction of Electronic Circuits simulation, ISOL, electron, monitoring 249
 
  • F. Waldhauser, H. Boukabache, D. Perrin, S. Roesler
    CERN, Meyrin, Switzerland
  • M. Dazer
    Universität Stuttgart, Stuttgart, Germany
 
  Funding: This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 13E18CHA).
Machine learning algorithms enable failure prediction of large-scale, distributed systems using historical time-series datasets. Although unsupervised learning algorithms represent a possibility to detect an evolving variety of anomalies, they do not provide links between detected data events and system failures. Additional system knowledge is required for machine learning algorithms to determine the nature of detected anomalies, which may represent either healthy system behavior or failure precursors. However, knowledge on failure behavior is expensive to obtain and might only be available upon pre-selection of anomalous system states using unsupervised algorithms. Moreover, system knowledge obtained from evaluation of system states needs to be appropriately provided to the algorithms to enable performance improvements. In this paper, we will present an approach to efficiently configure the integration of system knowledge into unsupervised anomaly detection algorithms for failure prediction. The methodology is based on simulations of failure modes of electronic circuits. Triggering system failures based on synthetically generated failure behaviors enables analysis of the detectability of failures and generation of different types of datasets containing system knowledge. In this way, the requirements for type and extend of system knowledge from different sources can be determined, and suitable algorithms allowing the integration of additional data can be identified.
 
slides icon Slides TU1BCO02 [2.541 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU1BCO02  
About • Received ※ 02 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 25 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO37 Personnel Safety Systems for ESS Beam on Dump and Beam on Target Operations MMI, operation, neutron, target 452
 
  • M. Mansouri, A. Abujame, A. Andersson, M. Carroll, D. Daryadel, M. Eriksson, A. Farshidfar, R. Foroozan, V.A. Harahap, P. Holgersson, J. Lastow, G.L. Ljungquist, N. Naicker, A. Nordt, D. Paulic, A. Petrushenko, D.A. Plotnikov, Y. Takzare
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a Pan-European project with 13 European nations as members, including the host nations Sweden and Denmark. ESS has been through staged installation and commissioning of the facility over the past few years. Along with the facility evolution, several Personnel Safety Systems, as key contributors to the overall personnel safety, have been developed and commissioned to support the safe operation of e.g. test stand for cryomodules Site Acceptance Test, test stand for Ion Source and Low Energy Beam Transport, and trial operation of the Normal Conducting Linac. As ESS is preparing for Beam on Dump (BoD) and Beam on Target (BoT) operations in coming years, PSS development is ongoing to enable safe commissioning and operation of the Linear Accelerator, Target Station, Bunker, and day-one Neutron Instruments. Personnel Safety Systems at ESS (ESS PSS) is an integrated system that is composed of several PSS systems across the facility. Following the experience gained from the earlier PSS built at ESS, modularized solutions have been adopted for ESS PSS that can adapt to the evolving needs of the facility from BoD and BoT operations to installing new Neutron Instruments during facility steady-state operation. This paper provides an overview of the ESS PSS, and its commissioning plan to support BoD and BoT operations.  
slides icon Slides TUMBCMO37 [1.135 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO37  
About • Received ※ 07 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP032 Reference Measurement Methods for Planar and Helical Undulators undulator, vacuum, FEL, electron 575
 
  • S. Karabekyan
    EuXFEL, Schenefeld, Germany
 
  The modern permanent magnet undulators are usually equipped with motors that have integrated feedback electronics. These are essentially rotary encoders that indicate the position of the motor axis. In addition, undulators are also equipped with linear encoders that provide the absolute value of the gap between the magnetic structures or the position of the magnetic girders relative to the undulator frame. The operating conditions of undulators should take into account the risks of failure of electronic equipment under the influence of radiation. In case of encoder failure, the motor or encoder must be replaced. To avoid the need to return the undulator to the magnetic measurement laboratory, reference measurements are required to restore the position of the magnetic structure after replacement. In this article, reference measurement procedures for planar and helical APPLE-X undulators used at the European XFEL are presented.  
poster icon Poster TUPDP032 [1.358 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP032  
About • Received ※ 06 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP093 CERN Proton Irradiation Facility (IRRAD) Data Management, Control and Monitoring System Infrastructure for post-LS2 Experiments experiment, controls, proton, monitoring 762
 
  • B. Gkotse, G. Pezzullo, F. Ravotti
    CERN, Meyrin, Switzerland
  • P. Jouvelot
    MINES Paris, PSL, Paris, Cedex 06,, France
 
  Funding: European Union’s Horizon 2020 Research and Innovation programme under GA no 101004761 and Horizon Europe Research and Innovation programme under Grant Agreement No 101057511.
Since upgrades of the CERN Large Hadron Collider are planned and design studies for a post-LHC particle accelerator are ongoing, it is key to ensure that the detectors and electronic components used in the CERN experiments and accelerators can withstand the high amount of radiation produced during particle collisions. To comply with this requirement, scientists perform radiation testing experiments, which consist in exposing these components to high levels of particle radiation to simulate the real operational conditions. The CERN Proton Irradiation Facility (IRRAD) is a well-established reference facility for conducting such experiments. Over the years, the IRRAD facility has developed a dedicated software infrastructure to support the control and monitoring systems used to manage these experiments, as well as to handle other important aspects such as dosimetry, spectrometry, and material traceability. In this paper, new developments and upgrades to the IRRAD software infrastructure are presented. These advances are crucial to ensure that the facility remains up-to-date and able to cope with the increasing (and always more complex) user needs. These software upgrades (some of them carried out within the EU-funded project AIDAinnova and EURO-LABS) will help to improve the efficiency and accuracy of the experiments performed at IRRAD and enhance the capabilities of this facility.
 
poster icon Poster TUPDP093 [2.888 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP093  
About • Received ※ 05 October 2023 — Revised ※ 21 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 10 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUSDSC07 Web Dashboards for CERN Radiation and Environmental Protection Monitoring SCADA, real-time, monitoring, interface 938
 
  • A. Ledeul, A. Savulescu, G. Segura
    CERN, Meyrin, Switzerland
 
  CERN has developed and operates a SCADA system for radiation and environmental monitoring, which is used by many users with different needs and profiles. To provide tailored access to this control system¿s data, the CERN’s Occupational Health & Safety and Environmental Protection (HSE) Unit has developed a web-based dashboard editor that allows users to create custom dashboards for data analysis. In this paper, we present a technology stack comprising Spring Boot, React, Apache Kafka, WebSockets, and WebGL that provides a powerful tool for a web-based presentation layer for the SCADA system. This stack leverages WebSocket for near-real-time communication between the web browser and the server. Additionally, it provides high-performant, reliable, and scalable data delivery using low-latency data streaming with Apache Kafka. Furthermore, it takes advantage of the GPU’s power with WebGL for data visualization. This web-based dashboard editor and the technology stack provide a faster, more integrated, and accessible solution for building custom dashboards and analyzing data.  
poster icon Poster TUSDSC07 [1.992 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUSDSC07  
About • Received ※ 04 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 08 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3AO01 Radiation-Tolerant Multi-Application Wireless IoT Platform for Harsh Environments network, controls, monitoring, operation 1051
 
  • S. Danzeca, A. Masi, R. Sierra
    CERN, Meyrin, Switzerland
  • J.L.D. Luna Duran, A. Zimmaro
    European Organization for Nuclear Research (CERN), Geneva, Switzerland
 
  We introduce a radiation-tolerant multi-application wireless IoT platform, specifically designed for deployment in harsh environments such as particle accelerators. The platform integrates radiation-tolerant hardware with the possibility of covering different applications and use cases, including temperature and humidity monitoring, as well as simple equipment control functions. The hardware is capable of withstanding high levels of radiation and communicates wirelessly using LoRa technology, which reduces infrastructure costs and enables quick and easy deployment of operational devices. To validate the platform’s suitability for different applications, we have deployed a radiation monitoring version in the CERN particle accelerator complex and begun testing multi-purpose application devices in radiation test facilities. Our radiation-tolerant IoT platform, in conjunction with the entire network and data management system, opens up possibilities for different applications in harsh environments.  
slides icon Slides WE3AO01 [19.789 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3AO01  
About • Received ※ 04 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3AO06 Deployment and Operation of the Remotely Operated Accelerator Monitor (ROAM) Robot controls, software, hardware, network 1077
 
  • T.C. Thayer, N. Balakrishnan, M.A. Montironi, A. Ratti
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
Monitoring the harsh environment within an operating accelerator is a notoriously challenging problem. High radiation, lack of space, poor network connectivity, or extreme temperatures are just some of the challenges that often make ad-hoc, fixed sensor networks the only viable option. In an attempt to increase the flexibility of deploying different types of sensors on an as-needed basis, we have built upon the existing body of work in the field and developed a robotic platform to be used as a mobile sensor platform. The robot is constructed with the objective of minimizing costs and development time, strongly leveraging the use of Commercial-Off-The-Shelf (COTS) hardware and open-source software (ROS). Although designed to be remotely operated by a user, the robot control system incorporates sensors and algorithms for autonomous obstacle detection and avoidance. We have deployed the robot to a number of missions within the SLAC LCLS accelerator complex with the double objective of collecting data to assist accelerator operations and of gaining experience on how to improve the robustness and reliability of the platform. In this work we describe our deployment scenarios, challenges encountered, solutions implemented and future improvement plans.
 
slides icon Slides WE3AO06 [4.578 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3AO06  
About • Received ※ 05 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 16 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3AO07 Measurement of Magnetic Field Using System-On-Chip Sensors controls, interface, electron, monitoring 1083
 
  • A. Sukhanov
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Magnetic sensors have been developed utilizing various physical phenomena such as Electromagnetic Induction, Hall Effect, Tunnel Magnetoresistance(TMR), Giant Magnetoresistance (GMR), Anisotropic Magnetoresistance (AMR) and Giant Magnetoimpedance (GMI). The compatibility of solid-state magnetic sensors with complementary metal-oxide-semiconductor (CMOS) fabrication processes makes it feasible to achieve integration of sensor with sensing and computing circuitry at the same time, resulting in systems on chip. In this paper we describe application of AMR, TMR and Hall effect integrated sensors for precise measurement of 3D static magnetic field in wide range of magnitudes from 10-6 T to 0.3 T, as well as pulsed magnetic field up to 0.3 T.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3AO07  
About • Received ※ 03 October 2023 — Revised ※ 09 November 2023 — Accepted ※ 17 December 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)