JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for TUPDP105: The SLS 2.0 Beamline Control System Upgrade Strategy

@inproceedings{celcer:icalepcs2023-tupdp105,
  author       = {T. Celcer and X. Yao and E. Zimoch},
  title        = {{The SLS 2.0 Beamline Control System Upgrade Strategy}},
% booktitle    = {Proc. ICALEPCS'23},
  booktitle    = {Proc. 19th Int. Conf. Accel. Large Exp. Phys. Control Syst. (ICALEPCS'23)},
  eventdate    = {2023-10-09/2023-10-13},
  pages        = {807--812},
  paper        = {TUPDP105},
  language     = {english},
  keywords     = {controls, experiment, EPICS, MMI, network},
  venue        = {Cape Town, South Africa},
  series       = {International Conference on Accelerator and Large Experimental Physics Control Systems},
  number       = {19},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {02},
  year         = {2024},
  issn         = {2226-0358},
  isbn         = {978-3-95450-238-7},
  doi          = {10.18429/JACoW-ICALEPCS2023-TUPDP105},
  url          = {https://jacow.org/icalepcs2023/papers/tupdp105.pdf},
  abstract     = {{After more than 20 years of successful operation the SLS facility will undergo a major upgrade, replacing the entire storage ring, which will result in a significantly improved beam emittance and brightness. In order to make use of improved beam characteristics, beamline upgrades will also play a crucial part in the SLS 2.0 project. However, offering our users an optimal beamtime experience will strongly depend on our ability to leverage the beamline control and data acquisition tools to a new level. Therefore, it is necessary to upgrade and modernize the majority of our current control system stack. This article provides an overview of the planned beamline control system upgrade from the technical as well as project management perspective. A portfolio of selected technical solutions for the main control system building blocks will be discussed. Currently, the controls HW in SLS is based on the VME platform, running the VxWorks operating system. Digital/analog I/O, a variety of motion solutions, scalers, high voltage power supplies, and timing and event system are all provided using this platform. A sensible migration strategy is being developed for each individual system, along with the overall strategy to deliver a modern high-level experiment orchestration environment. The article also focuses on the challenges of the phased upgrade, coupled with the unavoidable coexistence with existing VME-based legacy systems due to time, budget, and resource constraints. }},
}