Keyword: electron
Paper Title Other Keywords Page
MO3BCO05 Online Models for X-ray Beamlines Using Sirepo-Bluesky synchrotron, optics, radiation, controls 165
 
  • J.A. Einstein-Curtis, D.T. Abell, M.V. Keilman, P. Moeller, B. Nash, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • Y. Du, A. Giles, J. Lynch, T. Morris, M. Rakitin, A.L. Walter
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under Award Number DE-SC0020593.
Synchrotron radiation beamlines transport X-rays from the electron beam source to the experimental sample. Precise alignment of the beamline optics is required to achieve adequate beam properties at the sample. This process is often done manually and can be quite time consuming. Further, we would like to know the properties at the sample in order to provide metadata for X-ray experiments. Diagnostics may provide some of this information but important properties may remain unmeasured. In order to solve both of these problems, we are developing tools to create fast online models (also known as digital twins). For this purpose, we are creating reduced models that fit into a hierarchy of X-ray models of varying degrees of complexity and runtime. These are implemented within a software framework called Sirepo-Bluesky* that allows for the computation of the model from within a Bluesky session which may control a real beamline. This work is done in collaboration with NSLS-II. We present the status of the software development and beamline measurements including results from the TES beamline. Finally, we present an outlook for continuing this work and applying it to more beamlines at NSLS-II and other synchrotron facilities around the world.
*https://github.com/NSLS-II/sirepo-bluesky
 
slides icon Slides MO3BCO05 [3.747 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3BCO05  
About • Received ※ 13 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 09 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO4AO02 HydRA: A System-on-Chip to Run Software in Radiation-Exposed Areas radiation, software, electronics, FPGA 217
 
  • T. Gingold, G. Daniluk, J. Serrano, T. Włostowski
    CERN, Meyrin, Switzerland
  • M. Rizzi
    PSI, Villigen PSI, Switzerland
 
  In the context of the High-Luminosity LHC project at CERN, a platform has been developed to support groups needing to host electronics in radiation-exposed areas. This platform, called DI/OT, is based on a modular kit consisting of a System Board, Peripheral Boards and a radiation-tolerant power converter, all housed in a standard 3U crate. Groups customise their systems by designing Peripheral Boards and developing custom gateware and software for the System Board, featuring an IGLOO2 flash-based FPGA. It is compulsory for gateware designs to be radiation-tested in dedicated facilities before deployment. This process can be cumbersome and affects iteration time because access to radiation testing facilities is a scarce commodity. To make customisation more agile, we have developed a radiation-tolerant System-on-Chip (SoC), so that a single gateware design, extensively validated, can serve as a basis for different applications by just changing the software running in the processing unit of the SoC. HydRA (Hydra-like Resilient Architecture) features a triplicated RISC-V processor for safely running software in a radiation environment. This paper describes the overall context for the project, and then moves on to provide detailed explanations of all the design decisions for making HydRA radiation-tolerant, including the protection of programme and data memories. Test harnesses are also described, along with a summary of the test results so far. It concludes with ideas for further development and plans for deployment in the LHC.
https://ohwr.org/project/hydra/wikis/home
https://ohwr.org/project/diot/wikis/home
 
slides icon Slides MO4AO02 [11.131 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO4AO02  
About • Received ※ 06 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 27 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU1BCO02 Integrating System Knowledge in Unsupervised Anomaly Detection Algorithms for Simulation-Based Failure Prediction of Electronic Circuits simulation, ISOL, monitoring, radiation 249
 
  • F. Waldhauser, H. Boukabache, D. Perrin, S. Roesler
    CERN, Meyrin, Switzerland
  • M. Dazer
    Universität Stuttgart, Stuttgart, Germany
 
  Funding: This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 13E18CHA).
Machine learning algorithms enable failure prediction of large-scale, distributed systems using historical time-series datasets. Although unsupervised learning algorithms represent a possibility to detect an evolving variety of anomalies, they do not provide links between detected data events and system failures. Additional system knowledge is required for machine learning algorithms to determine the nature of detected anomalies, which may represent either healthy system behavior or failure precursors. However, knowledge on failure behavior is expensive to obtain and might only be available upon pre-selection of anomalous system states using unsupervised algorithms. Moreover, system knowledge obtained from evaluation of system states needs to be appropriately provided to the algorithms to enable performance improvements. In this paper, we will present an approach to efficiently configure the integration of system knowledge into unsupervised anomaly detection algorithms for failure prediction. The methodology is based on simulations of failure modes of electronic circuits. Triggering system failures based on synthetically generated failure behaviors enables analysis of the detectability of failures and generation of different types of datasets containing system knowledge. In this way, the requirements for type and extend of system knowledge from different sources can be determined, and suitable algorithms allowing the integration of additional data can be identified.
 
slides icon Slides TU1BCO02 [2.541 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU1BCO02  
About • Received ※ 02 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 25 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUMBCMO15 Enhancing Electronic Logbooks Using Machine Learning controls, interface, database, power-supply 382
 
  • J. Maldonado, S.L. Clark, W. Fu, S. Nemesure
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704
The electronic logbook (elog) system used at Brookhaven National Laboratory’s Collider-Accelerator Department (C-AD) allows users to customize logbook settings, including specification of favorite logbooks. Using machine learning techniques, customizations can be further personalized to provide users with a view of entries that match their specific interests. We will utilize natural language processing (NLP), optical character recognition (OCR), and topic models to augment the elog system. NLP techniques will be used to process and classify text entries. To analyze entries including images with text, such as screenshots of controls system applications, we will apply OCR. Topic models will generate entry recommendations that will be compared to previously tested language processing models. We will develop a command line interface tool to ease automation of NLP tasks in the controls system and create a web interface to test entry recommendations. This technique will create recommendations for each user, providing custom sets of entries and possibly eliminate the need for manual searching.
 
slides icon Slides TUMBCMO15 [0.905 MB]  
poster icon Poster TUMBCMO15 [4.697 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO15  
About • Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 24 November 2023 — Issued ※ 10 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP032 Reference Measurement Methods for Planar and Helical Undulators undulator, vacuum, FEL, radiation 575
 
  • S. Karabekyan
    EuXFEL, Schenefeld, Germany
 
  The modern permanent magnet undulators are usually equipped with motors that have integrated feedback electronics. These are essentially rotary encoders that indicate the position of the motor axis. In addition, undulators are also equipped with linear encoders that provide the absolute value of the gap between the magnetic structures or the position of the magnetic girders relative to the undulator frame. The operating conditions of undulators should take into account the risks of failure of electronic equipment under the influence of radiation. In case of encoder failure, the motor or encoder must be replaced. To avoid the need to return the undulator to the magnetic measurement laboratory, reference measurements are required to restore the position of the magnetic structure after replacement. In this article, reference measurement procedures for planar and helical APPLE-X undulators used at the European XFEL are presented.  
poster icon Poster TUPDP032 [1.358 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP032  
About • Received ※ 06 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP047 Development of Operator Interface Using Angular at the KEK e⁻/e⁺ Injector Linac operation, linac, database, interface 631
 
  • M. Satoh, I. Satake
    KEK, Ibaraki, Japan
  • T. Kudou, S. Kusano
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
 
  At the KEK e⁻/e⁺ injector linac, the first electronic operation logbook system was developed using a relational database in 1995. This logbook system has the capability to automatically record detailed operational status changes. In addition, operators can manually input detailed information about operational problems, which is helpful for future troubleshooting. In 2010, the logbook system was improved with the implementation of a redundant database, an Adobe Flash based frontend, and an image file handling feature. In 2011, the CSS archiver system with PostgreSQL and a new web-based archiver viewer utilizing Adobe Flash. However, with the discontinuation of Adobe Flash support at the end of 2020, it became necessary to develop a new frontend without Flash for both the operation logbook and archiver viewer systems. For this purpose, the authors adopted the Angular framework, which is widely used for building web applications using JavaScript. In this paper, we report the development of operator interfaces using Angular for the injector linac.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP047  
About • Received ※ 05 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP090 Web Application Packaging - Deploying Web Applications as Traditional Desktop Applications in CERN’s Control Centre controls, framework, target, Linux 746
 
  • M.H. von Hohenbühel, S. Deghaye, E. Galatas, E. Matli, E. Roux
    CERN, Meyrin, Switzerland
 
  Web applications are becoming increasingly performant and are now capable, in many cases, of replacing traditional desktop applications. There is also a user demand for web-based applications, surely linked to their modern look & feel, their ease of access, and the overall familiarity of the users with web applications due to their pervasive nature. However, when it comes to a Controls environment, the limitations caused by the fact that web applications run inside a web browser are often seen as a major disadvantage when compared to native desktop applications. In addition, applications deployed in CERN’s Control Centre are tightly integrated with the control system and use a CERN-specific launcher and manager that does not easily integrate with web browsers. This paper presents an analysis of the approaches that have been considered for deploying web applications and integrating them with CERN’s control system. The implications on the development process, the IT infrastructure, the deployment methods as well as the performance impact on the resources of the target computers are also discussed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP090  
About • Received ※ 10 October 2023 — Revised ※ 20 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP092 Life Cycle Management and Reliability Analysis of Controls Hardware Using Operational Data From EAM operation, hardware, controls, status 758
 
  • E. Fortescue, I. Kozsar, V. Schramm
    CERN, Meyrin, Switzerland
 
  The use of operational data from Enterprise Asset Management(EAM) systems has become an increasingly popular approach for conducting reliability analysis of industrial equipment. This paper presents a case study of how EAM data was used to analyse the reliability of CERN’s standard controls hardware, deployed and maintained by the Controls Electronics and Mechatronics group. The first part of the study involved the extraction, treatment and analysis of state-transition data to detect failures. The analysis was conducted using statistical methods, including failure-rate analysis and time-to-failure analysis to identify trends in equipment performance and plan for future obsolescence, upgrades and replacement strategies. The results of the analysis are available via a dynamic online dashboard. The second part of the study considers Front-End computers as repairable systems, composed of the previously studied non-repairable modules. The faults were recorded and analysed using the Accelerator Fault Tracking system. The study brought to light the need for high quality data, which led to improvements in the data recording process and refinement of the infrastructure team’s workflow. In the future, reliability analysis will become even more critical for ensuring the cost-effective and efficient operation of controls systems for accelerators. This study demonstrates the potential of EAM operational data to provide valuable insights into equipment reliability and inform decision-making for repairable and non-repairable systems.  
poster icon Poster TUPDP092 [40.179 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP092  
About • Received ※ 04 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 12 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP106 SwissFEL Resonant Kicker Control System kicker, controls, EPICS, FEL 813
 
  • R.A. Krempaská, A.D. Alarcon, S. Dordevic, C.H. Gough, M. Paraliev, W. Portmann
    PSI, Villigen PSI, Switzerland
 
  SwissFEL X-ray Free Electron Laser at the Paul Scherrer Institute is a user facility designed to run in two electron bunch mode in order to serve simultaneously two experimental beamline stations. Two closely spaced (28 ns) electron bunches are accelerated in one RF macro pulse up to 3 GeV. A high stability resonant kicker system and a Lambertson septum magnet are used to separate the bunches and to send them to the respective beamlines[1]. The resonant kickers control system consists of various hardware and software components whose tasks are the synchronization of the kickers with the electron beam, pulse-to-pulse amplitude and phase measurement, generating pulsed RF power to excite a resonating deflection current, as well as movement of the mechanical tuning vanes of the resonant kickers. The feedback software monitors and controls all the important parameters. We present the integration solutions of these components into EPICS.  
poster icon Poster TUPDP106 [2.025 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP106  
About • Received ※ 03 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP131 Longitudinal Feedback for the LCLS-II Superconducting Linear Accelerator at SLAC feedback, cavity, linac, controls 895
 
  • C.M. Zimmer, D. Chabot, W.S. Colocho, Y. Ding, J. Nelson
    SLAC, Menlo Park, California, USA
 
  Funding: U.S. Department of Energy under Grant No. DE-AC02-76SF00515
SLAC recently commissioned a new continuous-wave, MHz repetition-rate Superconducting (SC) Linear Accelerator (Linac). This accelerator can produce a 4 GeV electron beam that drives two dedicated Hard and Soft X-ray Undulator lines as part of the Linac Coherent Light Source (LCLS) Free Electron Laser. A new Python-based longitudinal feedback is used to control the electron beam energy and bunch length along the accelerator. This feedback was written to be simple, easily maintainable and easily portable for use on other accelerators or systems as a general-purpose feedback with minimal dependencies. Design and operational results of the feedback will be discussed, along with the Graphical User Interfaces built using Python Display Manager (PyDM).
 
poster icon Poster TUPDP131 [2.221 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP131  
About • Received ※ 29 September 2023 — Revised ※ 12 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP139 The Pointing Stabilization Algorithm for the Coherent Electron Cooling Laser Transport at RHIC laser, operation, gun, controls 913
 
  • L.K. Nguyen
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Coherent electron cooling (CeC) is a novel cooling technique being studied in the Relativistic Heavy Ion Collider (RHIC) as a candidate for strong hadron cooling in the Electron-Ion Collider (EIC). The electron beam used for cooling is generated by laser light illuminating a photocathode after that light has traveled approximately 40 m from the laser output. This propagation is facilitated by three independent optical tables that move relative to one another in response to changes in time of day, weather, and season. The alignment drifts induced by these environmental changes, if left uncorrected, eventually render the electron beam useless for cooling. They are therefore mitigated by an active "slow" pointing stabilization system found along the length of the transport, copied from the system that transversely stabilized the Low Energy RHIC electron Cooling (LEReC) laser beam during the 2020 and 2021 RHIC runs. However, the system-specific optical configuration and laser operating conditions of the CeC experiment required an adapted algorithm to address inadequate beam position data and achieve greater dynamic range. The resulting algorithm was successfully demonstrated during the 2022 run of the CeC experiment and will continue to stabilize the laser transport for the upcoming run. A summary of the algorithm is provided.
 
poster icon Poster TUPDP139 [2.129 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP139  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 08 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3AO03 Noise Mitigation for Neutron Detector Data Transport detector, FEM, neutron, power-supply 1066
 
  • K.J. Gofron
    BNL, Upton, New York, USA
  • R. Knudson, C. Ndo
    ORNL, Oak Ridge, Tennessee, USA
  • B. Vacaliuc
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Science, Scientific User Facilities Division under Contract No. DE-AC05-00OR22725.
Detector events at User Facilities require real-time fast transport of large data sets. Since construction, the SNS user facility successfully transported data using an in-house solution based on Channel Link LVDS point-to-point data protocol. Data transport solutions developed more recently have higher speed and more robustness; however, the significant hardware infrastructure investment limits migration to them. Compared to newer solutions the existing SNS LVDS data transport uses only parity error detection and LVDS frame error detection. The used channel link is DC coupled, and thus sensitive to noise from the electrical environment since it is difficult to maintain the same LVDS common reference potential over an extensive system of electronic boards in detector array networks. The SNS existing Channel Link* uses LVDS for data transport with clock of about 40 MHz and a mixture of parallel and serial data transport. The 7 bits per twisted pair in each clock cycle are transported over three pairs of Cat7 cable. The maximum data rate is about 840 Mbps per cat7 cable. The DS90CR217 or DS90CR218 and SN65LVDS32BD components are used with shielded Cat7 cabling in transporting LVDS data. Here we discuss noise mitigation methods to improve data transport within the existing as build infrastructure. We consider the role of shielding, ground loops, as well as specifically the use of toric ferrite insolation transformer for rf noise filtering.
* K. Vodopivec et al., "High Throughput Data Acquisition with EPICS", 16th ICALEPCS, 2017, Barcelona Spain, doi: 10.18429/JACoW-ICALEPCS2017-TUBPA05
 
slides icon Slides WE3AO03 [3.420 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3AO03  
About • Received ※ 04 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 18 December 2023 — Issued ※ 22 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3AO07 Measurement of Magnetic Field Using System-On-Chip Sensors controls, radiation, interface, monitoring 1083
 
  • A. Sukhanov
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Magnetic sensors have been developed utilizing various physical phenomena such as Electromagnetic Induction, Hall Effect, Tunnel Magnetoresistance(TMR), Giant Magnetoresistance (GMR), Anisotropic Magnetoresistance (AMR) and Giant Magnetoimpedance (GMI). The compatibility of solid-state magnetic sensors with complementary metal-oxide-semiconductor (CMOS) fabrication processes makes it feasible to achieve integration of sensor with sensing and computing circuitry at the same time, resulting in systems on chip. In this paper we describe application of AMR, TMR and Hall effect integrated sensors for precise measurement of 3D static magnetic field in wide range of magnitudes from 10-6 T to 0.3 T, as well as pulsed magnetic field up to 0.3 T.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3AO07  
About • Received ※ 03 October 2023 — Revised ※ 09 November 2023 — Accepted ※ 17 December 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO32 Robotic Process Automation: on the Continuity of Applications Development at SOLEIL PLC, laser, injection, synchrotron 1275
 
  • L.E. Munoz, Y.-M. Abiven, M.-E. Couprie, A. Noureddine, J. Perez, A. Thureau, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL is currently in the Technical Design Report (TDR) phase of a major upgrade of the facility. In its digital transformation, the development of processes and systems with a high degree of autonomy is at the center of the SOLEIL II project. One of the important components used to achieve a high degree of autonomy is the use of 6-axis robotic arms. Thus, in recent years, SOLEIL has developed and put into operation robotic applications to automate some processes of its beamlines and some processes of magnetic measurements of the insertion devices. The last year SOLEIL has been developing two new robotic applications, having thus continuity in the development of applications using its robotic standard. This paper describes these two new applications that being developed to automate the injection of liquid samples for BioSAXS experiments at the SWING beamline and to automate the mechanical and magnetic adjustment of the modules that compose an insertion device.  
slides icon Slides THMBCMO32 [17.856 MB]  
poster icon Poster THMBCMO32 [1.484 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO32  
About • Received ※ 05 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 22 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP021 Equipment Life-Cycle Management at EuXFEL FEL, controls, software, hardware 1346
 
  • N. Coppola, B.J. Fernandes, P. Gessler, S. Hauf, S.T. Huynh, N. Jardón Bueno, M. Manetti
    EuXFEL, Schenefeld, Germany
 
  Scientific instruments at the European X-Ray Free Electron Laser Facility (EuXFEL) comprises of a large variety of equipment, ranging from controllers, motors and encoders to valves. It is a false assumption that once a specific equipment had been procured and integrated, that no further attention is required. Reality is much more complex and incorporates various stages across the entire equipment life-cycle. This starts from the initial selection, standardization of the equipment, procurement, integration, tracking, spare part management, maintenance, documentation of interventions and repair, replacement and lastly, decommissioning. All aspects of such a life-cycle management are crucial in order to ensure safe and reliable operation across the life time of the equipment, whether it be five years, twenty years, or longer. At EuXFEL, many aspects of the described life-cycle management are already carried out with dedicated tools. However some aspects rely on manual work, which requires significant effort and discipline. This contribution aims to provide an overview of the requirements, and the ongoing efforts to develop and establish a complete life-cycle management at the EuXFEL.  
poster icon Poster THPDP021 [0.222 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP021  
About • Received ※ 05 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP060 Beam Instrumentation Simulation in Python simulation, electronics, instrumentation, framework 1454
 
  • M. Gonzalez-Berges, D. Alves, A. Boccardi, V. Chariton, I. Degl’Innocenti, S. Jackson, J. Martínez Samblas
    CERN, Meyrin, Switzerland
 
  The design of acquisition electronics for particle accelerator systems relies on simulations in various domains. System level simulation frameworks can integrate the results of specific tools with analytical models and stochastic analysis. This allows the designer to estimate the performance of different architectures, compare the results, and ultimately optimize the design. These simulation frameworks are often made of custom scripts for specific designs, which are hard to share or reuse. Adopting a standard interface for modular components can address these issues. Also, providing a graphical interface where these components can be easily configured, connected and the results visualised, eases the creation of simulations. This paper identifies which characteristics ISPy (Instrumentation Simulation in Python) should fulfill as a simulation framework. It subsequently proposes a standard format for signal-processing simulation modules. Existing environments which allow script integration and an intuitive graphical interface have then been evaluated and the KNIME Analytics Platform was the proposed solution. Additionally, the need to handle parameter sweeps for any parameter of the simulation, and the need for a bespoke visualisation tool will be discussed. Python has been chosen for all of these developments due to its flexibility and its wide adoption in the scientific community. The ensuing performance of the tool will also be discussed.  
poster icon Poster THPDP060 [2.931 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP060  
About • Received ※ 07 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP071 Application development on CPCI-S.0 Hardware at PSI controls, hardware, Linux, software 1508
 
  • I.J. Johnson, R. Biffiger, D. Felici, W. Koprek, R. Rybaniec, B. Stef, G. Theidel
    PSI, Villigen PSI, Switzerland
 
  A Hardware and Software Toolbox is being created to accelerate the engineering of electronic components for large facility upgrades at the Paul Scherrer Institut. This Toolbox consists of modular hardware and Base Designs that follow the CPCI-S.0 concept. Our goal is to provide a starting foundation, tools, modules and libraries to simplify and accelerate developments. This contribution will focus on the Base Designs that provide advanced starting points for applications on MPSoC devices, AMD Zynq Ultrascale+. It is an environment containing both a ready-to-use system and functional building blocks. It features two main layers: one for the Processing System (PS) and one for the Programmable Logic (PL). The former is a collection of the software packages that run within an Operating System. The latter, lower layer consists of a seed Vivado project and an array of ready-to-use firmware modules. A set of device-tree-overlay scripts is also available to create high-level connections between PS and PL components.  
poster icon Poster THPDP071 [2.388 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP071  
About • Received ※ 06 October 2023 — Revised ※ 27 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP078 Porting OpenMMC to STM32 Microcontrollers for Flexible AMC Development controls, MMI, interface, hardware 1529
 
  • M.B. Stubbings, E.P.J. Perez Juarez, L.T. Stant
    DLS, Oxfordshire, United Kingdom
  • A. Wujek
    CERN, Meyrin, Switzerland
 
  Diamond Light Source has chosen the MicroTCA platform for high performance data acquisition and controls as part of the Diamond-II 4th generation light source upgrade. One requirement is the ability to create custom advanced mezzanine cards (AMCs) for signal conditioning and interlock support. To facilitate this, a module management controller (MMC) is required to negotiate payload power and communications between the AMC and MicroTCA shelf. A popular open-source firmware for controlling such a device is OpenMMC, a project from the Brazillian Light Source (LNLS), which employs a modular approach using FreeRTOS on ARM microcontrollers. Initially, OpenMMC supported the NXP LPC series of devices. However, to make use of Diamond’s existing ST Microelectronics (STM32) infrastructure, we have integrated a CERN fork of the project supporting STM32 microcontrollers into OpenMMC. In this paper, we outline our workflow and experiences introducing a new ARM device into the project.  
poster icon Poster THPDP078 [1.246 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP078  
About • Received ※ 06 October 2023 — Revised ※ 27 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP087 LCLS-II Controls Software Architecture for the Wire Scan Diagnostics controls, FPGA, diagnostics, software 1556
 
  • N. Balakrishnan, J.D. Bong, A.S. Fisher, B.T. Jacobson, L. Sapozhnikov
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by Department of Energy, Office of Basic Energy Sciences, contract DE-AC02-76SF00515
The Super Conducting (SC) Linac Coherent Light Source II (LCLS-II) facility at SLAC is capable of delivering an electron beam at a fast rate of up to 1MHz. The high-rate necessitates the processing algorithms and data exchanges with other high-rate systems to be implemented with FPGA technology. For LCLS-II, SLAC has deployed a common platform solution (hardware, firmware, software) which is used by timing, machine protection and diagnostics systems. The wire scanner diagnostic system uses this solution to acquire beam synchronous time-stamped readings, of wire scanner position and beam loss during the scan, for each individual bunch. This paper explores the software architecture and control system integration for LCLS-II wire scanners using the common platform solution.
 
poster icon Poster THPDP087 [1.079 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP087  
About • Received ※ 06 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)