JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for TUPDP139: The Pointing Stabilization Algorithm for the Coherent Electron Cooling Laser Transport at RHIC

@inproceedings{nguyen:icalepcs2023-tupdp139,
  author       = {L.K. Nguyen},
  title        = {{The Pointing Stabilization Algorithm for the Coherent Electron Cooling Laser Transport at RHIC}},
% booktitle    = {Proc. ICALEPCS'23},
  booktitle    = {Proc. 19th Int. Conf. Accel. Large Exp. Phys. Control Syst. (ICALEPCS'23)},
  eventdate    = {2023-10-09/2023-10-13},
  pages        = {913--916},
  paper        = {TUPDP139},
  language     = {english},
  keywords     = {laser, operation, gun, electron, controls},
  venue        = {Cape Town, South Africa},
  series       = {International Conference on Accelerator and Large Experimental Physics Control Systems},
  number       = {19},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {02},
  year         = {2024},
  issn         = {2226-0358},
  isbn         = {978-3-95450-238-7},
  doi          = {10.18429/JACoW-ICALEPCS2023-TUPDP139},
  url          = {https://jacow.org/icalepcs2023/papers/tupdp139.pdf},
  abstract     = {{Coherent electron cooling (CeC) is a novel cooling technique being studied in the Relativistic Heavy Ion Collider (RHIC) as a candidate for strong hadron cooling in the Electron-Ion Collider (EIC). The electron beam used for cooling is generated by laser light illuminating a photocathode after that light has traveled approximately 40 m from the laser output. This propagation is facilitated by three independent optical tables that move relative to one another in response to changes in time of day, weather, and season. The alignment drifts induced by these environmental changes, if left uncorrected, eventually render the electron beam useless for cooling. They are therefore mitigated by an active "slow" pointing stabilization system found along the length of the transport, copied from the system that transversely stabilized the Low Energy RHIC electron Cooling (LEReC) laser beam during the 2020 and 2021 RHIC runs. However, the system-specific optical configuration and laser operating conditions of the CeC experiment required an adapted algorithm to address inadequate beam position data and achieve greater dynamic range. The resulting algorithm was successfully demonstrated during the 2022 run of the CeC experiment and will continue to stabilize the laser transport for the upcoming run. A summary of the algorithm is provided. }},
}