
CONCEPT AND DESIGN OF
AN EXTENSIBLE MIDDLE-LAYER APPLICATION FRAMEWORK FOR

ACCELERATOR OPERATIONS AND DEVELOPMENT∗

M. Schütte , A. Grünhagen , J. Georg, H. Schlarb1† 2

Deutsches Elektronen-Synchrotron DESY, Germany
1also at Hamburg University of Technology, Hamburg, Germany

2also at HAW Hamburg, Hamburg, Germany

Abstract
Data collection and analysis are becoming increasingly

vital not only for the experiments conducted with particle
accelerators but also for their operation, maintenance, and
development. Due to lack of feasible alternatives, experts
regularly resort to writing task-specific scripts to perform ac-
tions such as (event triggered or temporary) data collection,
system failure detection and recovery, and even simple high-
level feedbacks. Often, these scripts are not shared and are
deemed to have little reuse value, giving them a short lifetime
and causing redundant work. We report on a modular Python
framework for constructing middle-layer applications from
a library of modules (parameterized functionality blocks)
by writing a simple configuration file in a human-oriented
format. This encourages the creation of maintainable and
reusable modules while offering an increasingly powerful
and flexible platform that has few requirements to the user.
A core engine instantiates the modules according to the con-
figuration file, collects the required data from the control
system and distributes it to the individual module instances
for processing. Additionally, a publisher-subscriber messag-
ing system is provided for inter-module communication. We
discuss architecture & design choices, current state and fu-
ture goals of the framework as well as real use-case examples
from the European XFEL.

INTRODUCTION
Control systems for particle accelerators and other large

experimental physics facilities provide a common infras-
tructure for a vast and heterogeneous collection of subsys-
tems which expose a considerable amount of diagnostic,
monitoring and configuration data. For example, over nine
million data channels are exposed in the Distributed Object-
Oriented Control System (DOOCS) control system at Eu-
ropean XFEL [1]. This data is becoming increasingly vital
for ensuring reliable operation, cutting-edge system perfor-
mance, and failure detection and prevention. This is shown
by many recent projects working on data-driven methods for
accelerator setup [2, 3], operation [4], anomaly detection [5]
and predictive maintenance [6]. Such project rely on a solid

∗ The authors acknowledge support from DESY Hamburg, Germany, a
member of the Helmholtz Association HGF. © All figures and pictures
by the authors under a CC BY 4.0 license.

† maximilian.schuette@desy.de

data foundation which is as heterogeneous and complete as
possible, as explained in [7], where a long term archive for
the full state of an entire sub-system of the European XFEL
is set up. Logging such vast amounts of data continuously
over long time periods is however technically and financially
challenging, and few subsystems today have such a data
acquisition (DAQ) system readily available.

Problem Description
To circumvent this limitation, we frequently observe oper-

ators and researchers utilizing control system library bind-
ings in high-level scripting languages such as MATLAB
or Python for loop-based polling of interesting data chan-
nels. For shot-based facilities, this is usually extended with
data synchronization logic. Past the collection stage, the
obtained data is (pre)processed with reoccurring operations,
such as bit field extraction, sorting, outlier removal, aver-
aging, Fourier transform computation etc. and eventually
plotted. In a final stage, this offline analysis may result in
the development of an online algorithm to automate routine
tasks, generate reports, recover from system failure states or
implement basic feedbacks e.g. for performance optimiza-
tion.

This ad hoc scripting, in contrast to dedicated control sys-
tem application development, has the advantages of rapid
prototyping workflows and can be done directly by the scien-
tists and operators without having to rely on scarce software
developer resources. However, the do-it-yourself approach
has severe downsides as well. Information about such devel-
opment efforts is usually just spread by word-of-mouth, not
everyone profits immediately. Scripts are seldom committed
to a central code repository, making them hard to find and
maintain. Multiple versions circulate and when in doubt,
new users often rather start from scratch than understand
and fix an older code. This is also because ad hoc scripts
rarely follow good coding practices and speed is favoured
over readability. This is fatal not only because the same task
is solved redundantly over and over again, but also each time
bugs may be introduced that cost additional time to fix or,
even worse, stay unnoticed and produce incorrect results [8].

Solution Proposal / Requirements
In order to keep and even extend on the rapid prototyping

advantages of script based middle layer software, a guard
rail system is required, providing immediate benefits to the
operators and scientists using it and providing incentives

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO02

MO2BCO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

30

Software

Software Best Practices



to share code, stick to good coding practices and maintain
written code. We believe that such a guard rail system is
best implemented as an easily usable and extensible software
framework where new functionality can be added in terms
of modular code components, maintained as a community
project where power users maintain the core components
and help improve contributions from the community.

In the following section, we present such a framework,
based on the Python programming language, as it was
conceived at the Machine Beam Controls (MSK) group
at Deutsches Elektronen-Synchrotron (DESY) and imple-
mented for (but not limited to) the European XFEL and
FLASH machines running on DOOCS [9]. We detail core
functionality, application configuration and the framework
design. We then discuss the current status of the project
and first experiences and use cases of the framework. Fi-
nally, we summarize our contribution and outline next steps
for the proposed software framework. Throughout, we will
refer to the general framework concept as Extensible Middle-
Layer Application Framework (ExMAF) and our own imple-
mentation for DOOCS as DOOCS eXtensible Middle-Layer
Application Framework (DxMAF) [10].

AN EXTENSIBLE MIDDLE-LAYER
APPLICATION FRAMEWORK

Overview
The core design principles of the proposed ExMAF are

maximization of reusability and flexibility. The former is
achieved through generalization by clean separation of con-
figuration from functionality, while the latter is achieved
through modularization of functionality. Any application
running on the framework is thus defined through a configu-
ration file, specifying which modules to run and with which
parameters. The framework’s core engine is responsible
for parsing the configuration file, instantiating the modules,
collecting data and distributing it to the module instances
and passing on signals between modules. To illustrate with
an example, a simple trip event logger may be configured by
combining a module that continuously compares an indica-
tor data channel from the control system against a threshold
with a ring file writer module, collecting additional monitor-
ing channels and saving the current ring buffer to the disk
upon receiving a signal from the threshold checking mod-
ule. In the following, the module concept, the core engine
functionality and the configuration syntax will be described
in detail.

Modules & Messaging
In the context of ExMAF, a module is a marked Python

class that is instantiated with a custom set of parameters.
To do useful work after instantiation, the module class im-
plements interfaces in the form of abstract base classes pro-
vided by the framework. Common examples of interfaces
are DataSubscriber for automatic delivery of data from
the control system as it arrives and EventSubscriber and
EventPublisher for communication with other modules

based on named event pipes supplied by the PyPubSub pack-
age [11]. Modules provide great flexibility by enabling users
to replace general modules with highly specialized ones
as needed, without introducing backwards-incompatible
changes that would impact already existing applications.

Some care needs to be taken however when writing
modules. As modules are sequenced linearly, long com-
putations that are not off-loaded properly (e.g. using the
multiprocessing package) can cause high latency and
application stalling. Due to blocking processing of signals,
deadlocks may occur. Finally, race conditions may occur due
to unknown order of execution. In the author’s opinion, the
high responsibility of module programmers is outweighed
by the low weight and flexibility of the framework.

For inspiration, we list a few module ideas, many of which
have already been implemented or partially in DxMAF.

• NpyFileWriter: Efficiently dumps received data to
NPY files on the disk along with a metadata file in
JSON format. Handles out-of-order data and automat-
ically splits files when reaching a maximum file size.
Signals other modules once files have been closed or
receives signals to close the current set of files. Useful
for basic data collection.

• NpyRingFileWriter: Similar to NpyFileWriter
but overwrites old data once a fixed size buffer has
been filled. Buffer can be either on-disk or in-memory.
Buffer seam position is stored in the adjacent metadata
file. Useful for condition based data acquisition, e.g.
trips.

• FileMover: Upon receiving a signal, transfers the files
specified by the signal or matching a wildcard parame-
ter to a destination storage. Useful for transferring data
from control system nodes to a central storage such as
dCache [12].

• ThresholdChecker: Compares a set of data channels
against lower and upper threshold values. If any one
channel breaks either threshold, a signal is emitted
and latched until all channels are again within bounds.
Useful for time-domain trip detection.

• SpectrumChecker: A specialized version of the
ThresholdChecker, performing threshold checking
on a power spectral density estimate of the data. Useful
for frequency-domain event detection.

• CommandRunner: Executes a shell command upon re-
ceiving a signal. Command parameters may be taken
from the signal context. Useful for utilizing external
tools within the application.

• EmailDispatcher: Sends an email to specified re-
cipients upon receiving a signal. Useful for notifying
operators of events.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO02

Software

Software Best Practices

MO2BCO02

31

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Configuration
As mentioned in the beginning of this section, configu-

ration in the context of this framework does not only mean
providing parameters to the core and modules, but in its
structure, the configuration file directly defines the appli-
cation running on the framework. As such, it can vaguely
be considered a domain-specific language (DSL), as it al-
lows users without prior programming skills to construct
new applications easily using a human-readable structured
format.

Listing 1: Sample configuration file
1 # DxMAF configuration file
2 # Defines a simple trip event logger for

↪ high jitter events
3
4 extensions: ./dxmaf/extensions
5
6 duration: 14d
7 # stop_time: 2042-01-01T00:00:00
8
9 application:

10 - type: ThresholdChecker
11 channels:
12 - XFEL.SYNC/LASER.LOCK.XLO/XTIN.MLO1/

↪ CURRENT_INPUT_JITTER.RD
13 args:
14 lower_limit: -inf
15 upper_limit: 20
16 topics: high_jitter
17 - type: NpyRingFileWriter
18 channels:
19 - XFEL.SYNC/LASER.LOCK.XLO/XTIN.MLO1/

↪ CURRENT_INPUT_JITTER.RD
20 - XFEL.SYNC/LASER.LOCK.XLO/XTIN.MLO1/

↪ OXC_IN.SPEC
21 - XFEL.SYNC/LASER.LOCK.XLO/XTIN.MLO1/

↪ LOCK_STATUS.VALUE.RD
22 args:
23 output_dir: high_jitter_trip_%Y-%m-%

↪ d_%H%M%S
24 ring_file_size: 1024
25 memory_buffering: true
26 topics:
27 - high_jitter

Listing 1 shows an actual configuration file for the trip event
logger example used before, written in YAML, the configura-
tion language chosen in DxMAF. Walking through from the
top, the configuration starts with a docstring comment, fol-
lowed by a core setting, extensions in line 4, pointing the
framework’s engine to the module repository. Lines 6 and 7
show two ways to automatically terminate the application
after or at a certain time. The application key in line 9
initiates the definition of the actual middle-layer service.
Each mapping in the enumeration instantiates a module of
the class identified by the type field. The args field accepts

a mapping of argument-value pairs to be passed to the con-
structor of the module. Remaining siblings, in this example
channels and topics are special arguments inherited from
implemented interfaces, which require introspection from
the engine. An argument topics on the top-level module
definition indicates to the engine, that the module wishes to
recieve messages published to the listed named channels. As
an argument, ‘topics‘ indicates named channels, to which
the module will publish its own messages.

DxMAF uses strict schema validation provided by the
strictyaml package [13] to ensure that typos in the con-
figuration do not cause (potentially critical) unwanted be-
haviour. Subschema for the modules are automatically gen-
erated from the module class constructor signatures and
the implemented interfaces. To perform proper type vali-
dation, the signatures must be annotated using Python type
hints [14]. The typing.Optional qualifier and default ar-
guments are also recognized, allowing the user to omit these
keys in the configuration.

Core
The purpose of the framework’s engine is two-fold. In a

first stage, the engine bootstraps the application by pars-
ing command line arguments, reading the configuration
file, loading the module repository, generating a schema
for the configuration file as described above and validating
it, and then instantiating the requested modules with the
user parameters. The second stage, the main loop, consists
of polling data or processing pushed data from the con-
trol system as requested by modules and passing it on to
each module, channel by channel. Delegating this task to
the core minimizes control system calls and data transfer
volume, as modules are agnostic and would have to query
the same channel redundantly. In the example of listing 1,
the channel XFEL.SYNC/LASER.LOCK.XLO/XTIN.MLO1/
↪ CURRENT_INPUT_JITTER.RD is requested by both mod-
ules, but only read once by the engine, then distributed to
both modules.

FIRST EXPERIENCES
Since the first alpha release around spring 2020, DxMAF

has been used for numerous studies (short- & long-term
data acquisition) and is actively used to monitor accelerator
systems for trips and to provide data snapshots for post-trip
root-cause analysis. In [6], DxMAF was used to collect
over 100 data channels from 25 low-level radio frequency
(LLRF) stations in the European XFEL for fault analysis.
In [15], DxMAF was used to periodically collect snapshots
of high-resolution (several MB/s) ADC streams across mul-
tiple devices for predictive maintenance algorithm develop-
ment. An ongoing study by the machine control systems
group collects long-term phase and amplitude data from
klystrons, approx. 0.25 MB/s for 12 channels, for anomaly
detection. Following the earthquakes on February 6th and
September 8th 2023 in Turkey and Morocco, respectively,
DxMAF application instances have been deployed to collect

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO02

MO2BCO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

32

Software

Software Best Practices



long-term data streams to search for seismic activity affect-
ing the European XFEL. Likewise, DxMAF has been used
several times to monitor the effect of regional events such as
concerts or storms on the highly-sensitive optical synchro-
nization system at European XFEL and FLASH. As a next
step, a module for detecting certain signatures of seismic
activity is under consideration.

Beyond these noteworthy application examples, DxMAF
has been used numerous times for ad hoc measurements and
studies, and we repeatedly received positive feedback from
the users, specifically regarding the deployment speed and
the resulting data quality and ease of access, compared to
other available data collection methods. Even though appli-
cations occasionally refused to start up due to configuration
errors (as intended) and sometimes due to bugs resulting
from previously unconsidered use cases, we cannot recall
a situation in which the application seemingly ran fine but
produced unusable or erroneous data files.

We attribute the success of DxMAF to the reliability of
the tried & tested code and the technical support provided
by project developers to the users in setting up DxMAF
applications. With each new use case, developers were able
to spend time improving on and adding new modules and
core functionality rather than writing the same base code
over and over again, thus growing the feature set and by
extension the user community.

CONCLUSION & OUTLOOK
In this paper, we have motivated and presented a general

concept for an extensible middle-layer application frame-
work and detailed central design choices for DOOCS specific
implementation DxMAF. We showed that the modular de-
sign helped to reduce redundant work for users and increased
the quality of the code and the resulting data. Clean sepa-
ration of functionality from use case specific configuration
in combination with a human-friendly configuration format
ensures wide applicability and ease of use. We listed several
projects where the framework has helped produce scientific
results more quickly and reliably and reported on favourable
user feedback.

For future work, several lines of development exist. The
perhaps most ambitious goal is to transfer the implementa-
tion of DxMAF to other control systems, either by branching
the project and maintaining separate cores for each target
control system, or by making the control system interface
modular as well, similar to [16]. Another high-value target
is to conceptualize and implement data pipelining function-
ality for modules, likely by proving an appropriate inter-
face for modules to implement. Low-hanging fruits are
increasing user autonomy by improving on the project doc-
umentation and adding support for additional output data
formats by writing extra modules or generalizing the existing
NpyFileWriter module.

REFERENCES
[1] T. Wilksen et al., “The Control System for the Linear Acceler-

ator at the European XFEL: Status and First Experiences”, in
Proc. ICALEPCS’17, Barcelona, Spain, Oct. 2017, pp. 1–5.
doi:10.18429/JACoW-ICALEPCS2017-MOAPL01

[2] J. Kaiser, O. Stein, and A. Eichler, “Learning-based opti-
misation of particle accelerators under partial observability
without real-world training”, in Proc. 39th Intl. Conf. Ma-
chine Learning (ICML’2022), 2022.

[3] J. Kaiser et al., “Learning to do or learning while doing:
Reinforcement learning and Bayesian optimisation for online
continuous tuning”, 2023.
doi:10.48550/arXiv.2306.03739

[4] J. St. John et al., “Real-time artificial intelligence for accel-
erator control: A study at the Fermilab booster”, Phys. Rev.
Accel. Beams, vol. 24, p. 104 601, 10 2021.
doi:10.1103/PhysRevAccelBeams.24.104601

[5] A. Eichler, J. Branlard, and J. H. K. Timm, “Anomaly detec-
tion at the European X-ray Free Electron Laser using a parity-
space-based method”, Phys. Rev. Accel. Beams, vol. 26, no. 1,
p. 012 801, 2023.
doi:10.1103/PhysRevAccelBeams.26.012801

[6] A. Grünhagen, J. Branlard, A. Eichler, G. Martino, G. Fey,
and M. Tropmann-Frick, “Fault analysis of the beam accel-
eration control system at the European XFEL using data
mining”, in Proc. 30th IEEE Asian Test Symp., 2021, pp. 61–
66.

[7] M. Schütte, A. Eichler, T. Lamb, V. Rybnikov, H. Schlarb,
and T. Wilksen, “Subsystem Level Data Acquisition for the
Optical Synchronization System at European XFEL”, in Proc.
IPAC’21, Campinas, Brazil, May 2021, pp. 2167–2169.
doi:10.18429/JACoW-IPAC2021-TUPAB291

[8] Things you should never do, part I, https://www.
joelonsoftware.com/2000/04/06/things-you-
should-never-do-part-i/

[9] Distributed Object-Oriented Control System, DOOCS,
https://doocs.desy.de/

[10] DxMAF, https://gitlab.desy.de/xfel-facility/
dxmaf

[11] PyPubSub, https://pypubsub.readthedocs.io

[12] T. Mkrtchyan et al., “dCache: Inter-disciplinary storage sys-
tem”, in EPJ Web Conf., vol. 251, 2021.

[13] StrictYAML, https://hitchdev.com/strictyaml/

[14] PEP 484 – type hints, https://peps.python.org/pep-
0484/

[15] A. Grünhagen, A. Eichler, M. Tropmann-Frick, and G. Fey,
“Condition monitoring and fault detection of a laser oscillator
feedback system”, in Proc. 33rd Intl. Conf. Info. Model. Know.
Bases EJC, Maribor, SI, 2023, pp. 61–66.

[16] G. Varghese et al., “ChimeraTK - a software tool kit for
control applications”, in Proc. 8th Int. Part. Accel. Conf.,
2017.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO02

Software

Software Best Practices

MO2BCO02

33

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


