JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for MO4AO02: HydRA: A System-on-Chip to Run Software in Radiation-Exposed Areas

@inproceedings{gingold:icalepcs2023-mo4ao02,
  author       = {T. Gingold and G. Daniluk and M. Rizzi and J. Serrano and T. Włostowski},
  title        = {{HydRA: A System-on-Chip to Run Software in Radiation-Exposed Areas}},
% booktitle    = {Proc. ICALEPCS'23},
  booktitle    = {Proc. 19th Int. Conf. Accel. Large Exp. Phys. Control Syst. (ICALEPCS'23)},
  eventdate    = {2023-10-09/2023-10-13},
  pages        = {217--221},
  paper        = {MO4AO02},
  language     = {english},
  keywords     = {radiation, software, electron, electronics, FPGA},
  venue        = {Cape Town, South Africa},
  series       = {International Conference on Accelerator and Large Experimental Physics Control Systems},
  number       = {19},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {02},
  year         = {2024},
  issn         = {2226-0358},
  isbn         = {978-3-95450-238-7},
  doi          = {10.18429/JACoW-ICALEPCS2023-MO4AO02},
  url          = {https://jacow.org/icalepcs2023/papers/mo4ao02.pdf},
  abstract     = {{In the context of the High-Luminosity LHC project at CERN, a platform has been developed to support groups needing to host electronics in radiation-exposed areas. This platform, called DI/OT, is based on a modular kit consisting of a System Board, Peripheral Boards and a radiation-tolerant power converter, all housed in a standard 3U crate. Groups customise their systems by designing Peripheral Boards and developing custom gateware and software for the System Board, featuring an IGLOO2 flash-based FPGA. It is compulsory for gateware designs to be radiation-tested in dedicated facilities before deployment. This process can be cumbersome and affects iteration time because access to radiation testing facilities is a scarce commodity. To make customisation more agile, we have developed a radiation-tolerant System-on-Chip (SoC), so that a single gateware design, extensively validated, can serve as a basis for different applications by just changing the software running in the processing unit of the SoC. HydRA (Hydra-like Resilient Architecture) features a triplicated RISC-V processor for safely running software in a radiation environment. This paper describes the overall context for the project, and then moves on to provide detailed explanations of all the design decisions for making HydRA radiation-tolerant, including the protection of programme and data memories. Test harnesses are also described, along with a summary of the test results so far. It concludes with ideas for further development and plans for deployment in the LHC. }},
}