JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for WE1BCO01: VME2E: VME to Ethernet - Common Hardware Platform for legacy VME Module Upgrade

TY  - CONF
AU  - Jamilkowski, J.P.
AU  - Tian, Y.
ED  - Schaa, Volker RW
ED  - Götz, Andy
ED  - Venter, Johan
ED  - White, Karen
ED  - Robichon, Marie
ED  - Rowland, Vivienne
TI  - VME2E: VME to Ethernet - Common Hardware Platform for legacy VME Module Upgrade
J2  - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023
CY  - Cape Town, South Africa
T2  - International Conference on Accelerator and Large Experimental Physics Control Systems
T3  - 19
LA  - english
AB  - VME architecture was developed in late 1970s. It has proved to be a rugged control system hardware platform for the last four decades. Today the VME hardware platform is facing four challenges from 1) backplane communication speed bottleneck; 2) computing power limits from centralized computing infrastructure; 3) obsolescence and cost issues to support a real-time operating system; 4) obsolescence issues of the legacy VME hardware. The next generation hardware platform such as ATCA and microTCA requires fundamental changes in hardware and software. It also needs large investment. For many legacy system upgrades, this approach is not applicable. We will discuss an open-source hardware platform, VME2E (VME to Ethernet), which allows the one-to-one replacement of legacy VME module without disassembling of the existing VME system. The VME2E has the VME form factor. It can be installed the existing VME chassis, but without use the VME backplane to communicate with the front-end computer and therefore solves the first three challenges listed above. The VME2E will only take advantage of two good benefits from a VME system: stable power supply which VME2E module will get from the backplane, and the cooling environment. The VME2E will have the most advanced 14nm Xilinx FPGA SOM with GigE for parallel computing and high speed communication. It has a high pin count (HPC) FPGA mezzanine connector (FMC) to benefit the IO daughter boards supply of the FMC ecosystem. The VME2E is designed as a low cost, open-source common platform for legacy VME upgrade. 
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 949
EP  - 951
KW  - FPGA
KW  - Ethernet
KW  - hardware
KW  - controls
KW  - real-time
DA  - 2024/02
PY  - 2024
SN  - 2226-0358
SN  - 978-3-95450-238-7
DO  - doi:10.18429/JACoW-ICALEPCS2023-WE1BCO01
UR  - https://jacow.org/icalepcs2023/papers/we1bco01.pdf
ER  -