Author: Abiven, Y.-M.
Paper Title Page
TUMBCMO21 SOLEIL II: Towards A Major Transformation of the Facility 404
 
  • Y.-M. Abiven, S.-E. Berrier, A. Buteau, I. Chado, E. Fonda, E. Frahi, B. Gagey, L.S. Nadolski, P. Pierrot
    SOLEIL, Gif-sur-Yvette, France
 
  Operational since 2008, SOLEIL [1] is providing users with access to a wide range of experimental techniques thanks to its 29 beamlines, covering a broad energy range from THz to hard X-ray. In response to new scientific and societal challenges, SOLEIL is undergoing a major transformation with the ongoing SOLEIL II project. This project includes designing an ambitious Diffraction Limited Storage Ring (DLSR) [2] to increase performances in terms of brilliance, coherence, and flux, upgrading the beamlines to provide advanced methods, and driving a digital transformation in data- and user- oriented approaches. This paper presents the project organization and technical details studies for the ongoing upgrades, with a focus on the digital transformation required to address future scientific challenges. It will depict the computing and data management program with the presentation of the targeted IT architecture to improve automated and data-driven processes for optimizing instrumentation. The optimization program covers the facility reconstruction period as well as future operation, including the use of Artificial Intelligence (AI) techniques for data production management, decision-making, complex feedbacks, and data processing. Real-time processes are to be applied in the acquisition scanning design, where detectors and robotic systems will be coupled to optimize beam time.  
slides icon Slides TUMBCMO21 [0.663 MB]  
poster icon Poster TUMBCMO21 [1.908 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO21  
About • Received ※ 04 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO15 Conan for Building C++ Tango Devices at SOLEIL 1227
 
  • P. Madela, G. Abeillé, Y.-M. Abiven, X. Elattaoui, J. Pham, F. Potier
    SOLEIL, Gif-sur-Yvette, France
 
  At SOLEIL, our Tango devices are mainly developed in C++, with around 450 projects for building libraries and device servers for our accelerators and beamlines. We have a software factory that has enabled us to achieve continuous integration of our developments using Maven, which manages project dependencies. However, Maven is uncommon for C++. In addition, it has limitations that hinder us from supporting future platforms and new programming standards, leading us to replace it with Conan. Conan is a dependency and package manager for C and C++ that works on all platforms and integrates with various build systems. Its features are designed to enable modern continuous integration workflows with C++ and are an ideal alternative to Maven for our C++ build system. This transition is essential for the upgrade of SOLEIL (SOLEIL II*), as we continue to develop new devices and update existing systems. We are confident that Conan will improve our development process and benefit our users. This paper will provide an overview of the integration process and describe the progress of deploying the new build system. We will share our insights and lessons learned throughout the transition process.
*SOLEIL II: Towards A Major Transformation of the Facility.
Conan - C and C++ Open-Source Package Manager
 
slides icon Slides THMBCMO15 [0.824 MB]  
poster icon Poster THMBCMO15 [0.867 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO15  
About • Received ※ 04 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO32 Robotic Process Automation: on the Continuity of Applications Development at SOLEIL 1275
 
  • L.E. Munoz, Y.-M. Abiven, M.-E. Couprie, A. Noureddine, J. Perez, A. Thureau, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL is currently in the Technical Design Report (TDR) phase of a major upgrade of the facility. In its digital transformation, the development of processes and systems with a high degree of autonomy is at the center of the SOLEIL II project. One of the important components used to achieve a high degree of autonomy is the use of 6-axis robotic arms. Thus, in recent years, SOLEIL has developed and put into operation robotic applications to automate some processes of its beamlines and some processes of magnetic measurements of the insertion devices. The last year SOLEIL has been developing two new robotic applications, having thus continuity in the development of applications using its robotic standard. This paper describes these two new applications that being developed to automate the injection of liquid samples for BioSAXS experiments at the SWING beamline and to automate the mechanical and magnetic adjustment of the modules that compose an insertion device.  
slides icon Slides THMBCMO32 [17.856 MB]  
poster icon Poster THMBCMO32 [1.484 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO32  
About • Received ※ 05 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 22 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP007 Rolling Out a New Platform for Information System Architecture at SOLEIL 1301
 
  • G. Abeillé, Y.-M. Abiven, B. Gagey
    SOLEIL, Gif-sur-Yvette, France
  • P. Grojean, F. Quillien, C. Rognon, V. Szyndler
    Emoxa, Boulogne-Billancourt, France
 
  SOLEIL Information System is a 20-year legacy with multiple software and IT solutions following constantly evolving business requirements. Lots of non-uniform and siloed information systems have been experienced increasing the IT complexity. The future of SOLEIL (SOLEIL II*) will be based on a new architecture embracing native support for continuous digital transformation and will enhance user experience. Redesigning an information system given synchrotron-based science challenges requires a homogeneous and flexible approach. A new organizational setup is starting with the implementation of a transversal architectural committee. Its missions will be to set the foundation of architecture design principles and to foster all projects’ teams to apply them. The committee will support the building of architectural specifications and will drive all architecture gate reviews. Interoperability is a key pillar for SOLEIL II. Therefore, a synchronous and asynchronous inter-processes communications is being built as a platform to connect existing systems and future ones; it is based both on an event broker and an API manager. An implementation has been developed to interconnect our existing operational tools (CMMS** and our ITSM*** portal). Our current use case is a brand new application dedicated to samples’ lifecycle interconnected with various existing business applications. This paper will detail our holistic approach for addressing the future evolution of our information system, made mandatory given the new requirements from SOLEIL II.
* SOLEIL II: Towards A Major Transformation of the Facility
** CMMS: Computerized Maintenance Management System
*** ITSM: Information Technology Service Management
 
poster icon Poster THPDP007 [1.397 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP007  
About • Received ※ 05 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)