Paper | Title | Other Keywords | Page |
---|---|---|---|
MO1BCO01 | The Intelligent Observatory | operation, controls, software, target | 1 |
|
|||
The South African Astronomical Observatory (SAAO) has embarked on an ambitious initiative to upgrade its telescopes, instruments, and data analysis capabilities, facilitating their intelligent integration and seamless coordination. This endeavour aims not only to improve efficiency and agility but also to unlock exciting scientific possibilities within the realms of multi-messenger and time-domain astronomy. The program encompasses hardware enhancements enabling autonomous operations, complemented by the development of sophisticated software solutions. Intelligent algorithms have been meticulously crafted to promptly and autonomously respond to real-time alerts from telescopes worldwide and space-based observatories. Overseeing this sophisticated framework is the Observatory Control System, actively managing the observing queue in real-time. This presentation will provide a summary of the program’s notable achievements thus far, with a specific focus on the successful completion and full operational readiness of one of the SAAO telescopes. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO1BCO01 | ||
About • | Received ※ 31 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 07 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MO2BCO05 | Enabling Transformational Science Through Global Collaboration and Innovation Using the Scaled Agile Framework | framework, alignment, software, feedback | 47 |
|
|||
Funding: Square Kilometre Array Observatory The SKAO is one observatory, with two telescopes on three continents. It will be the world’s largest radio telescope once constructed, and will be able to observe the sky with unprecedented sensitivity and resolution. The SKAO software and computing systems will largely be responsible for orchestrating the observatory and associated telescopes, and processing the science data, before data products are distributed to regional science centres. The Scaled Agile Framework (SAFe) is being leveraged to coordinate over thirty lean agile development teams that are distributed throughout the world. In this paper, we report on our experience in using the Scaled Agile Framework, the successes we have enjoyed, as well as the impediments and challenges that have stood in our way. |
|||
Slides MO2BCO05 [6.064 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2BCO05 | ||
About • | Received ※ 06 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 15 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUMBCMO38 | Towards the Zero Code Waste to Increase the Impact of Science | software, controls, TANGO, FEL | 456 |
|
|||
Accelerators and other big science facilities rely heavily on internally developed technologies, including control system software. Much of it can and is shared between labs, like the Tango Controls and EPICS. Then, some of it finds broad application outside science, like the famous World Wide Web. However, there are still a lot of duplicating efforts in the labs, and a lot of software has the potential to be applied in other areas. Increasing collaboration and involving private companies can help avoid redundant work. It can decrease the overall costs of laboratory development and operation. Having private industry involved in technology development also increases the chances of new applications. This can positively impact society, which means effective spending of public funds. The talk will be based on the results of a survey looking at how much scientific institutes and companies focus on collaboration and dissemination in the field of software technologies. It will also include remarks based on the authors’ experiences in building an innovative ecosystem. | |||
Slides TUMBCMO38 [0.294 MB] | |||
Poster TUMBCMO38 [1.016 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO38 | ||
About • | Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 06 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||