Paper | Title | Page |
---|---|---|
MO2AO01 | Facing the Challenges of Experiment Control and Data Management at ESRF-EBS | 66 |
|
||
In 2020 the new ESRF-EBS (Extremely Brilliant Source) took-up operation. With the much higher photon flux, experiments are faster and produce more data. To meet the challenges, a complete revision of data acquisition, management and analysis tools was undertaken. The result is a suite of advanced software tools, deployed today on more than 30 beamlines. The main packages are BLISS for experiment control and data acquisition, LIMA2 for high-speed detector control, EWOKS for data reduction and analysis workflows, and Daiquiri the web GUI framework. BLISS is programmed in Python, to allow easy sequence programming for scientists and easy integration of scientific software. BLISS offers: Configuration of hardware and experimental set-ups, a generic scanning engine for step-based and continuous data acquisition, live data display, frameworks to handle 1D and 2D detectors, spectrometers, monochromators, diffractometers (HKL) and regulation loops. For detectors producing very high data rates, data reduction at the source is important. LIMA2 allows parallel data processing to add the necessary computing power (CPU and GPU) for online data reduction in a flexible way. The EWOKS workflow system can use online or offline data to automate data reduction or analysis. Workflows can run locally or on a compute cluster, using CPUs or GPUs. Results are saved or fed back to the control system for display or to adapt the next data acquisition. | ||
Slides MO2AO01 [2.766 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO01 | |
About • | Received ※ 03 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 29 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MO2AO02 | A Beamline and Experiment Control System for the SLS 2.0 | 71 |
|
||
The beamlines of the Swiss Light Source (SLS) predominantly rely on EPICS standards as their control interface but in contrast to many other facilities, there is up to now no standardized user interfacing component to orchestrate, monitor and provide feedback on the data acquisition. As a result, the beamlines have either adapted community solutions or developed their own high-level orchestration system. For the upgrade project SLS 2.0, a sub-project was initiated to facilitate a unified beamline and experiment control system. During a pilot phase and a first development cycle, libraries of the Bluesky project were used, combined with additional in-house developed services, and embedded in a service-based approach with a message broker and in-memory database. Leveraging the community solutions paired with industry standards, enabled the development of a highly modular system which provides the flexibility needed for a constantly changing scientific environment. One year after the development started, the system was already tested during many weeks of user operation and recently received the official approval by the involved divisions to be rolled out as part of the SLS 2.0 upgrade. | ||
Slides MO2AO02 [3.119 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO02 | |
About • | Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 14 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MO2AO03 | The Solid Sample Scanning Workflow at the European XFEL | 78 |
|
||
The fast solid sample scanner (FSSS) used at the HED instrument of the European XFEL (EuXFEL) enables data collection from multiple samples mounted into standardized frames which can be exchanged via a transfer system without breaking the interaction chamber vacuum. In order to maximize the effective target shot repetition rate, it is a key requirement to use sample holders containing pre-aligned targets measured on an accurate level of a few micrometers. This contribution describes the automated sample delivery workflow for performing solid sample scanning using the FSSS. This workflow covers the entire process, from automatically identifying target positions within the sample, using machine learning algorithms, to set the parameters needed to perform the scans. The integration of this solution into the EuXFEL control system, Karabo, not only allows to control and perform the scans with the existing scan tool but also provides tools for image annotation and data acquisition. The solution thus enables the storage of data and metadata for future correlation across a variety of beamline parameters set during the experiment. | ||
Slides MO2AO03 [12.892 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO03 | |
About • | Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 20 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MO2AO04 | Experimental Data Taking and Management: The Upgrade Process at BESSY II and HZB | 84 |
|
||
The endeavor of modernizing science data acquisition at BESSY II started 2019 [*] Significant achievements have been made: the Bluesky software ecosystem is now accepted framework for data acquisition, flow control and automation. It is operational at an increasing number of HZB beamlines, endstations and instruments. Participation in the global Bluesky collaboration is an extremely empowering experience. Promoting FAIR data principles at all levels developed a unifying momentum, providing guidance at less obvious design considerations. Now a joint demonstrator project of DESY, HZB, HZDR and KIT, named ROCK-IT (Remote Operando Controlled Knowledge-driven, IT-based), aims at portable solutions for fully automated measurements in the catalysis area of material science and is spearheading common developments. Foundation there is laid by Bluesky data acquisition, AI/ML support and analysis, modular sample environment, robotics and FAIR data handling. This paper puts present HZB controls projects as well as detailed HZB contributions to this conference [**] into context. It outlines strategies providing appropriate digital tools at a successor 4th generation light source BESSY III.
[*] R. Müller, et.al. https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL02 [**] covering digital twins, Bluesky, sample environment, motion control, remote access, meta data |
||
Slides MO2AO04 [2.522 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO04 | |
About • | Received ※ 05 October 2023 — Revised ※ 26 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 16 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MO2AO05 | Deployment of ADTimePix3 areaDetector Driver at Neutron and X-ray User Facilities | 90 |
|
||
Funding: This work was supported by the U.S. Department of Energy, Office of Science, Scientific User Facilities Division under Contract No. DE-AC05-00OR22725. TimePix3 is a 65k hybrid pixel readout chip with simultaneous Time-of-Arrival (ToA) and Time-over-Threshold (ToT) recording in each pixel*. The chip operates without a trigger signal with a sparse readout where only pixels containing events are read out. The flexible architecture allows 40 MHits/s/cm2 readout throughput, using simultaneous readout and acquisition by sharing readout logic with transport logic of superpixel matrix formed using 2x4 structure. The chip ToA records 1.5625 ns time resolution. The X-ray and charged particle events are counted directly. However, indirect neutron counts use 6Li fission in a scintillator matrix, such as ZnS(Ag). The fission space-charge region is limited to 5-9 um. A photon from scintillator material excites a photocathode electron, which is further multiplied in dual-stack MCP. The neutron count event is a cluster of electron events at the chip. We report on the EPICS areaDetector** ADTimePix3 driver that controls Serval*** using json commands. The driver directs data to storage and to a real-time processing pipeline and configures the chip. The time-stamped data are stored in raw .tpx3 file format and passed through a socket where the clustering software identifies individual neutron events. The conventional 2D images are available as images for each exposure frame, and a preview is useful for sample alignment. The areaDetector driver allows integration of time-enhanced capabilities of this detector into SNS beamlines controls and unprecedented time resolution. *T Poikela et al 2014 JINST 9 C05013. **https://github.com/areaDetector ***Software provided by the vendor (ASI) that interfaces detector (10GE) and EPICS data acquisition ioc ADTimePix3 |
||
Slides MO2AO05 [3.379 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO05 | |
About • | Received ※ 04 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 28 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MO2AO06 | Neutron From a Distance: Remote Access to Experiments | 95 |
|
||
Large-scale experimental facilities such as the ILL are designed to accommodate thousands of international visitors each year. Despite the annual influx of visitors, there has always been interest in options that don’t require users to travel to ILL. Remote access to instruments and datasets would unlock scientific opportunities for those less able to travel and contribute to global challenges like pandemics and global warming. Remote access systems can also increase the efficiency of experiments. For measurements that last a long time scientists can check regularly on the progress of the data taking from a distance, adjusting the instrument remotely if needed. Based on the VISA platform, the remote access becomes a cloud-based application which requires only a web browser and an internet connection. NOMAD Remote provides the same experience for users at home as though they were carrying out their experiment at the facility. VISA makes it easy for the experimental team to collaborate by allowing users and instrument scientists to share the same environment in real time. NOMAD Remote, an extension of the ILL instrument control software, enables researchers to take control of all instruments with continued hands-on support from local experts. Developed in-house, NOMAD Remote is a ground-breaking advance in remote access to neutron techniques. It allows full control of the extensive range of experimental environments with the highest security standards for data, and access to the instrument is carefully prioritised and authenticated. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO06 | |
About • | Received ※ 31 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 09 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MO2AO07 | Dynamical Modelling Validation and Control Development for the New High-Dynamic Double-Crystal Monochromator (HD-DCM-Lite) for Sirius/LNLS | 100 |
|
||
Two new High-Dynamic Double-Crystal Monochromators (HD-DCM-Lite) are under installation in Sirius/LNLS for the new beamlines QUATI (quick-EXAFS) and SAPUCAIA (SAXS), which requires high in-position stability (5 nrad RMS in terms of pitch) whereas QUATI’s DCM demands the ability to perform quick sinusoidal scans in frequencies, for example 15 Hz at 4 mrad peak-to-peak amplitude. Therefore, this equipment aims to figure as an unparalleled bridge between slow step-scan DCMs, and channel-cut quick-EXAFS monochromators. In the previous conference, the dynamical modelling of HD-DCM-Lite was presented, indicating the expected performance to achieve QUATI and SAPUCAIA requirements. In this work, we are going to present the offline validation of the dynamical modelling, comparing to the solutions achieved for the previous version of LNLS HD-DCMs. This work also presents the hardware-based control architecture development, discussing the loop shaping technique and upgrades in the system, such as the increase of the position resolution, synchronization of the rotary stages, and FPGA code optimization. Furthermore, we describe how the motion controller was developed, given the high-performance motion control, such as complex control algorithm in parallel with a minimal jitter and the expectations for the beamlines commissioning regarding detector and undulator synchronization. | ||
Slides MO2AO07 [2.432 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO07 | |
About • | Received ※ 06 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 12 December 2023 — Issued ※ 19 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMBCMO29 | Motion Controls for ORNL Neutron Science Experimental Beamlines | 1261 |
|
||
Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy This paper presents a comprehensive overview of the motion control systems employed within the neutron science user facilities at Oak Ridge National Laboratory (ORNL). The Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) at ORNL have a total of 35 neutron beam lines with numerous motors for mo-tion control. The motion systems vary in complexity from a linear sample positioning stage to multi-axis end stations. To enhance the capabilities of these motion systems, a concerted effort has been made to establish standardized hardware and flexible software that improve performance, increase reliability and provide the capability for automated experiments. The report discusses the various motion controllers used, the EPICS-based IOCs (Input Output Controllers), high-level motion software, and plans for ongoing upgrades and new projects. |
||
Slides THMBCMO29 [1.893 MB] | ||
Poster THMBCMO29 [6.483 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO29 | |
About • | Received ※ 05 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 22 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMBCMO30 | Using ArUco Codes for Beam Spot Analysis with a Camera at an Unknown Position | 1264 |
|
||
Measuring the focus size and position of an X-ray beam at the interaction point in an synchrotron beamline is a critical parameter that is used when planning experiments and when determining if a beamline is achieving it’s design goals. Commonly this is performed using a dedicated UHV "focus chamber" comprising a fluorescent screen at an adjustable calibrated distance from the mounting flange and a camera on the same axis as the beam. Having to install a large piece of hardware makes regular checks prohibitively time consuming. A fluorescent screen can be mounted to a sample holder and moved using a manipulator in the existing end-station and a camera pointed at this to show a warped version of the beam spot at the interaction point. The warping of the image is caused by the relative position of the camera to the screen, which is difficult to determine and can change and come out of camera focus as the manipulator is moved. This paper proposes a solution to this problem using ArUco codes printed onto a fluorescent screen which provide a reference in the image. Reference points from the ArUco codes are recovered from an image and used to correct warping and provide a calibration in real time using an EPICS AreaDetector plugin using OpenCV. This analysis is presently in commissioning and aims to characterise the beam spots at the dual-colour beamline of the EMIL laboratory at BESSY II. | ||
Slides THMBCMO30 [4.674 MB] | ||
Poster THMBCMO30 [0.942 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO30 | |
About • | Received ※ 16 September 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 22 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMBCMO31 | LImA2: Edge Distributed Acquisition and Processing Framework for High Performance 2D Detectors | 1269 |
|
||
LImA* is a framework born at the ESRF for 2D Data Acquisition (DAQ), basic Online Data Analysis (ODA) and processing with high-throughput detectors. While in production for 15 years in several synchrotron facilities, the ever-increasing detector frame rates make more and more difficult performing DAQ & ODA tasks on a single computer**. LImA2 is designed to scale horizontally, using multiple hosts for DAQ & ODA. This enables more advanced strategies for data feature extraction while keeping a low latency. LImA2 separates three functional blocks: detector control, image acquisition, and data processing. A control process configures the detector, while one or more receiver processes perform the DAQ and ODA, like the generation of fast feedback signals. The detectors currently supported in LImA2 are the PSI/Jungfrau, the ESRF/Smartpix and the Dectris/Eiger2. The former performs pixel assembly and intensity correction in GPU; the second exploits RoCE capabilities; and the latter features dual threshold, multi-band images. Raw data rates up to 8 GByte/s can be handled by a single computer, scalable if necessary. In addition to a classic processing, advanced pipelines are also implemented. A Serial-MX/pyFAI*** pipeline extracts diffraction peaks in GPU in order to filter low quality data. NVIDIA GPUDirect is used by a third pipeline providing 2D processing with remarkable low latency. IBM Power9 optimizations like the NX GZIP compression and the PCI-e multi-host extension are exploited.
* LIMA - https://accelconf.web.cern.ch/ICALEPCS2013/papers/frcoaab08.pdf ** Jungfraujoch - https://doi.org/10.1107/S1600577522010268 *** pyFAI - https://doi.org/10.1107/S1600576715004306 |
||
Slides THMBCMO31 [0.572 MB] | ||
Poster THMBCMO31 [14.959 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO31 | |
About • | Received ※ 06 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMBCMO32 | Robotic Process Automation: on the Continuity of Applications Development at SOLEIL | 1275 |
|
||
SOLEIL is currently in the Technical Design Report (TDR) phase of a major upgrade of the facility. In its digital transformation, the development of processes and systems with a high degree of autonomy is at the center of the SOLEIL II project. One of the important components used to achieve a high degree of autonomy is the use of 6-axis robotic arms. Thus, in recent years, SOLEIL has developed and put into operation robotic applications to automate some processes of its beamlines and some processes of magnetic measurements of the insertion devices. The last year SOLEIL has been developing two new robotic applications, having thus continuity in the development of applications using its robotic standard. This paper describes these two new applications that being developed to automate the injection of liquid samples for BioSAXS experiments at the SWING beamline and to automate the mechanical and magnetic adjustment of the modules that compose an insertion device. | ||
Slides THMBCMO32 [17.856 MB] | ||
Poster THMBCMO32 [1.484 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO32 | |
About • | Received ※ 05 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 22 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMBCMO34 | Ultra-High Throughput Automated Macromolecular Crystallography Data Collection Using the Bluesky Framework | 1280 |
|
||
At Diamond Light Source, several Macromolecular Crystallography (MX) beamlines focus on, or include, completely automated data collection. This is used primarily for high throughput collection on samples with known or partially known structures, for example, screening a protein for drug or drug fragment interactions. The automated data collection routines are currently built on legacy experiment orchestration software which includes a lot of redundancy originally implemented for safety when human users are controlling the beamline, but which is inefficient when the beamline hardware occupies a smaller number of known states. Diamond is building its next generation, service-based, Data Acquisition Platform, Athena, using NSLSII’s Bluesky experiment orchestration library. The Bluesky library facilitates optimising the orchestration of experiment control by simplifying the work necessary to parallelise and reorganise the steps of an experimental procedure. The MX data acquisition team at Diamond is using the Athena platform to increase the possible rate of automated MX data collection both for immediate use and in preparation to take advantage of the upgraded Diamond-II synchrotron, due in several years. This project, named Hyperion, will include sample orientation and centring, fluorescence scanning, optical monitoring, collection strategy determination, and rotation data collection at multiple positions on a single sample pin. | ||
Slides THMBCMO34 [1.002 MB] | ||
Poster THMBCMO34 [3.445 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO34 | |
About • | Received ※ 04 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 19 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMBCMO35 | Piezo Motor Based Hardware Triggered Nano Focus Caustic Acquisition | 1285 |
|
||
The evaluation of the focus produced by a KB (Kirkpatrick-Baez) mirror system is a challenging endeavor. In MOGNO (Micro and nano tomography) beamline’s case at Sirius, the KB was designed to produce a focus of 150x150 nm2, requiring a setup to evaluate the mirrors’ alignment in a timely manner. The developed diagnostic system is comprised of a stack of three linear inertia drive piezo stages and a fluorescence detector, acquiring data via hardware-triggered mesh scans. In the piezo stack, the stages are mounted along the X (horizontal, perpendicular to the beam path), Z (along the beam path) and YZ beamline directions. Moreover, the fact that a stage is placed at an angle requires the use of a kinematic transformation when scaning the focus along the Y axis, while the X axis scan can be done with a pure motion. The mesh scan can be diveded in two parts: hardware triggered line scan acquisition along X or Y and software triggered steps along Z between scans. In this manner, the control is done via a collection of low-level controller macros and Python scripts, such that during the scans, the piezo controllers communicate with each other and the detector via digital pulses, orchestrated by the in-house TATU (Timing and Trigger Unit) software*, reducing dead time between acquisition points. The proposed system proved to be reliable to acquire beam profiles, providing caustics in both horizontal and vertical directions. Currently, the acquired focus caustics indicate that the main source has a size of approximately 480x500 nm2.
* TATU: A Flexible FPGA-Based Trigger and Timer Unit Created on CompactRIO for the First Sirius Beamlines ISBN 978-3-95450-221-9 ISSN 2226-0358 URL https://jacow.org/icalepcs2021/papers/thpv021.pdf |
||
Slides THMBCMO35 [1.608 MB] | ||
Poster THMBCMO35 [1.666 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO35 | |
About • | Received ※ 06 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 20 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMBCMO36 | Video Compression for areaDetector | 1290 |
|
||
At neutron sources such as SNS and HFIR, neutrons collide with neutron detectors at a much lower rate than light would for an optical detector. Additionally, the image typically does not pan or otherwise move. This means that the incremental element-by-element differences between frames will be small. This makes neutron imaging data an ideal candidate for video-level compression where the incremental differences between frames are compressed and sent, as opposed to image-level compression where the entire frame is compressed and sent. This paper describes an EPICS video compression plugin for areaDetector that was developed at SNS. | ||
Slides THMBCMO36 [0.312 MB] | ||
Poster THMBCMO36 [0.221 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO36 | |
About • | Received ※ 05 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 15 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMBCMO38 |
Jungfraujoch: Data Acquisition and Real-Time Image Analysis System for Kilohertz X-Ray Pixel Array Detector | |
|
||
Funding: F.L. acknowledges funding from the Open Research Data Program of the ETH Board and an innovation project supported by Innosuisse. The Swiss Light Source (SLS) will shortly start an upgrade to become a 4th generation light source. The higher brilliance of the new source brings new science opportunities - one of them is improving time resolution for X-ray crystallography to a microsecond regime. However, fully utilizing the new machine will require increasing the frame rate of pixel array detectors and, thus, data volume. Nine-megapixel JUNGFRAU detector* planned for SLS 2.0 beamlines will generate up to 36 GB/s raw data when operated at 2 kHz**, which is very challenging for computing infrastructure. To operate this JUNGFRAU detector, PSI has developed a ’Jungfraujoch’ read-out system***. The system can handle the complete data rate within a single server box for fast deployment at various beamlines. The system uses FPGA smart network interface cards for data acquisition, GPUs for on-the-fly image analysis (e.g., spot finding, radial integration), and high-end CPUs for image compression. In the presentation, I will show Jungfraujoch’s capabilities, experience from time-resolved macromolecular crystallography beamtimes, and technical details. I will highlight how FPGA design with high-level languages (C/C++) can help software developers design programmable logic quickly and how it can help in rapid verification. I will also present experiences working with a memory-coherent interconnect (OpenCAPI) to integrate FPGA boards into the server system and how it compares with a mainstream peripheral bus (PCI Express). * F. Leonarski et al. (2018). Nat. Methods, 15, 799-804. ** F. Leonarski et al. (2020). Struct. Dyn., 7, 014305. *** F. Leonarski et al. (2022). J. Synchrotron Rad., 30, 227-234. |
||
Slides THMBCMO38 [0.345 MB] | ||
Poster THMBCMO38 [2.708 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPDP040 | Control System of the ForMAX Beamline at the MAX IV Synchrotron | 1402 |
|
||
This paper describes the design and implementation of the control system for the ForMAX beamline at the MAX IV synchrotron. MAX IV is a Swedish national laboratory that houses one of the brightest synchrotron light sources in the world. ForMAX is one of the beamlines at MAX IV and is funded by the Knut and Alice Wallenberg Foundation and Swedish industry via Treesearch. To meet the specific demands of ForMAX, a new control system was developed using the TANGO Controls and Sardana frameworks. Using these frameworks enables seamless integration of hardware and software, ensuring efficient and reliable beamline operation. The control system was designed to support a variety of experiments, including multiscale structural characterization from nanometer to millimeter length scales by combining full-field tomographic imaging, small- and wide-angle X-ray scattering (SWAXS), and scanning SWAXS imaging in a single instrument. The system allows for precise control of the beam position, energy, intensity, and sample position. Furthermore, the system provides real-time feedback on the status of the experiments, allowing for adjustments to be made quickly and efficiently. In conclusion, the design and implementation of the control system for the ForMAX beamline at the MAX IV synchrotron has resulted in a highly flexible and efficient experimental station. TANGO Controls and Sardana have allowed for seamless integration of hardware and software, enabling precise and reliable control of the beamline for a wide range of experiments. | ||
Poster THPDP040 [0.668 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP040 | |
About • | Received ※ 04 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPDP050 | Improving User Experience and Performance in Sardana and Taurus: A Status Report and Roadmap | 1420 |
|
||
Sardana Suite is an open-source scientific SCADA solution used in synchrotron light beamlines at ALBA, DESY, MAXIV and SOLARIS and in laser labs at MBI-Berlin. It is formed by Sardana and Taurus - both mature projects, driven by a community of users and developers for more than 10 years. Sardana provides a low level interface to the hardware, middle level abstractions and a sequence engine. Taurus is a library for developing graphical user interfaces. Sardana Suite uses client - server architecture and is built on top of TANGO. As a community, during the last few years, on one hand we were focusing on improving user experience, especially in terms of reliability and performance and on the other hand renewing the dependency stack. The system is now more stable, easier to debug and recover from a failure. An important effort was put in profiling and improving performance of Taurus applications startup. The codebase has been migrated to Python 3 and the plotting widgets were rewritten with pyqtgraph. This didn’t prevent us from delivering new features, like for example the long-awaited configuration tools and format based on YAML which is easy and intuitive to edit, browse, and track historical changes. Now we conclude this phase in the project’s lifetimes and are preparing for new challenging requirements in the area of continuous scans like higher data throughput and more complex synchronization configurations. Here we present the status report and the future roadmap. | ||
Poster THPDP050 [0.605 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP050 | |
About • | Received ※ 06 October 2023 — Revised ※ 26 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 21 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPDP052 | Characterizing Motion Control Systems to Enable Accurate Continuous and Event-Based Scans | 1431 |
|
||
The European Spallation Source (ESS) is adopting innovative data acquisition and analysis methods using global timestamping for neutron scattering research. This study characterises the timing accuracy and reliability of the instrument control system by examining an integrated motion and fast detection system. We designed an experimental apparatus featuring a motion axis controlled by a Beckhoff programmable logic controller (PLC) using TwinCAT 3 software. The encoder readback is timestamped in the PLC, which is time-synchronised with the ESS master clock via a Microresearch Finland event receiver (EVR) using Precision Time Protocol (PTP). We repeatedly scanned the motor between known positions at different speeds. The system was characterised by correlating the position and timestamp recorded by the PLC with independent information using a fast optical position sensor read out directly by the MRF system. The findings of this study provide a good benchmark for the upcoming experiments in neutron scattering research at ESS and should be interesting for those aiming to build similar setups. | ||
Poster THPDP052 [1.185 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP052 | |
About • | Received ※ 05 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPDP054 |
Fast, Fully Automated Continuous Energy Scan at the Biomax Beamline at Max IV Laboratory | |
|
||
BioMAX is an X-ray macromolecular crystallography (MX) beamline* at MAX IV Laboratory that delivers an X-ray beam with a photon flux of up to 1e13 ph/s. The photon energy at the beamline can be easily adjusted between 6 keV and 24 keV. At MX beamlines Single- and Multi-wavelength Anomalous Dispersion (SAD and MAD) methods are used for experimental phasing to reconstruct the macromolecular structures. To be able to benefit from these techniques, it is imperative for an MX beamline to have a fast and automated energy scan routine. This contribution reports on the newly implemented continuous energy scan procedure at BioMAX. The scan routine performs a synchronous motion of the undulator and monochromator motors to continuously scan the energy while measuring the fluorescence from the sample as the energy changes. The data acquisition during the scan is triggered by the actual energy value which is monitored throughout the scan at 1 MHz rate. The energy scan routine is fully automated and minimizes the radiation damage on the sample during the measurements. The scan itself is as short as one second making the overall procedure a factor of five faster than a conventional step scan.
* Ursby T. et al. "BioMAX - the first macromolecular crystallography beamline at MAX IV Laboratory." Journal of Synchrotron Radiation 27, 1415 - 1729, (2020). |
||
Poster THPDP054 [4.700 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPDP066 | Visualization Tools to Monitor Structure and Growth of an Existing Control System | 1485 |
|
||
The ALICE experiment at the LHC has already been in operation for 15 years, and during its life several detectors have been replaced, new instruments installed, and some technologies changed. The control system has therefore also had to adapt, evolve and expand, sometimes departing from the symmetry and compactness of the original design. In a large collaboration, different groups contribute to the development of the control system of their detector. For the central coordination it is important to maintain the overview of the integrated control system to assure its coherence. Tools to visualize the structure and other critical aspects of the system can be of great help and can highlight problems or features of the control system such as deviations from the agreed architecture. This paper will present that existing tools, such as graphical widgets available in the public domain, or techniques typical of scientific analysis, can be adapted and help assess the coherence of the development, revealing any weaknesses and highlighting the interdependence of parts of the system. We show how we have used some of these techniques to analyse the coherence of the ALICE control system, and how this contributed to pointing out criticalities and key points. | ||
Poster THPDP066 [13.717 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP066 | |
About • | Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 13 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |