Paper | Title | Page |
---|---|---|
TUMBCMO22 | Integration of an MPSoC-based acquisition system into the CERN control system | 409 |
|
||
Funding: CERN Future generations of Beam Instrumentation systems will be based on Multiprocessor System on Chip (MPSoC) technology. This new architecture will allow enhanced exploitation of instrumentation signals from CERN’s accelerator complex, and has thus been chosen as the next platform for several emerging systems. One of these systems, for the HL-LHC BPM (High-Luminosity LHC Beam Position Monitors), is currently at a prototyping stage, and it is planned to test this prototype with signals from real monitors in CERN’s accelerators during 2023. In order to facilitate the analysis of the prototype’s performance, a strategy to integrate the setting, control and data acquisition within CERN’s accelerator control system has been developed. This paper describes the exploration of various options and eventual choices to achieve a functional system, covering all aspects from data acquisition from the gateware, through to eventual logging on the accelerator logging database. It also describes how the experiences of integrating this prototype will influence future common strategies within the accelerator sector, highlighting how specific problems were addressed, and quantifying the performance we can eventually expect in the final MPSoC-based systems. |
||
Slides TUMBCMO22 [0.466 MB] | ||
Poster TUMBCMO22 [1.140 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO22 | |
About • | Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 27 November 2023 — Issued ※ 06 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUMBCMO23 | Development and New Perspectives on the LMJ Power Conditioning Modules | 415 |
|
||
The Laser MegaJoule (LMJ), a 176-beam laser French facility, located at the CEA* CESTA close to Bordeaux is part of the French Simulation Program, for improvement of theoretical models, high performance numerical simulations and experimental validations. It is designed to deliver about 1.4 MJ of energy on targets, for plasma and fusion experiments. With 15 bundles operational at the end of 2023, the operational capabilities are increasing gradually until the full completion of the LMJ facility by 2025. With the increasing of the Power Conditioning Modules (PCM), it has been observed more and more instabilities in the synchronization and the repeatability of the PCM’s triggering. For experiments based on 10 or more bundles, it has resulted in the issue of coupling the LMJ bundles with the PETAL laser and in the safety shutdown of the PCM due to the timeout of capacitors under high voltage. In this paper, a description of the LMJ PCM is first given. Then, the considered problem is presented with a detailed analysis and the software solution is finally presented with experimental results showing the gain in the reliability and effectiveness of the PCM during the LMJ-PETAL shots.
* CEA : Commissariat à l Energie Atomique et aux Energies Alternatives |
||
Slides TUMBCMO23 [2.897 MB] | ||
Poster TUMBCMO23 [0.941 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO23 | |
About • | Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 09 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUMBCMO24 | A New Real-Time Processing Platform for the Elettra 2.0 Storage Ring | 419 |
|
||
Processing synchronous data is essential to implement efficient control schemes. A new framework based on Linux and DPDK will be used to acquire and process sensors and control actuators at very high repetition rate for Elettra 2.0. As part of the ongoing project, the actual fast orbit feedback subsystem is going to be re-implemented with this new technology. Moreover the communication performance with the new power converters for the new storage ring is presented. | ||
Slides TUMBCMO24 [0.683 MB] | ||
Poster TUMBCMO24 [0.218 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO24 | |
About • | Received ※ 02 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 08 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUMBCMO25 | Operational Controls for Robots Integrated in Accelerator Complexes | 423 |
|
||
The fourth industrial revolution, the current trend of automation and data interconnection in industrial technologies, is becoming an essential tool to boost maintenance and availability for space applications, warehouse logistics, particle accelerators and for harsh environments in general. The main pillars of Industry 4.0 are Internet of Things (IoT), Wireless Sensors, Cloud Computing, Artificial Intelligence (AI), Machine Learning and Robotics. We are finding more and more way to interconnect existing processes using technology as a connector between machines, operations, equipment and people. Facility maintenance and operation is becoming more streamlined with earlier notifications, simplifying the control and monitor of the operations. Core to success and future growth in this field is the use of robots to perform various tasks, particularly those that are repetitive, unplanned or dangerous, which humans either prefer to avoid or are unable to carry out due to hazards, size constraints, or the extreme environments in which they take place. To be operated in a reliable way within particle accelerator complexes, robot controls and interfaces need to be included in the accelerator control frameworks, which is not obvious when movable systems are operating within a harsh environment. In this paper, the operational controls for robots at CERN is presented. Current robot controls at CERN will be detailed and the use case of the Train Inspection Monorail robot control will be presented. | ||
Slides TUMBCMO25 [47.070 MB] | ||
Poster TUMBCMO25 [2.228 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO25 | |
About • | Received ※ 05 October 2023 — Revised ※ 29 November 2023 — Accepted ※ 11 December 2023 — Issued ※ 16 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUMBCMO26 |
MQTT Interface for Omron PLCs to EPICS | |
|
||
The ISIS Neutron and Muon Source accelerator control system is in the process of migrating from Vsystem software running on the OpenVMS operating system to an EPICS/Linux system. New Omron NX/NJ Programmable Logic Controller (PLC) systems added as part of our Target Station 1 upgrade have been integrated solely into EPICS. These devices were initially connected using a Python-IOC based on a library that implements the Common Industrial Protocol (CIP) communications protocol, a library which is no longer under active development. The need to maintain the CIP library and update it to overcome its limitations would require significant developer effort. There are no alternative pure-Python implementations of the CIP protocol under active development meaning that an alternative communication protocol had to be considered. To that end we have developed an MQTT (Message Queuing Telemetry Transport) based interface that leverages our existing experience with MQTT and manufacturer maintained Sysmac MQTT libraries. We discuss the ease of maintenance, adaptability, and performance of our solution. | ||
Slides TUMBCMO26 [0.724 MB] | ||
Poster TUMBCMO26 [0.993 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUMBCMO27 | EPICS IOC Integration with Rexroth Controller for a T-Zero Chopper | 429 |
|
||
A neutron chopper is not typically used as a filter, but rather as a way to modulate a beam of neutrons to select a certain energy range or to enable time-of-flight measurements. T-Zero neutron choppers have been incorporated into several beamlines at SNS and are operated via a Rexroth controller. However, the current OPC is only compatible with Windows XP, which has led to the continued use of an XP machine to run both the Indradrive (Rexroth interface) and EPICS IOC. This setup has caused issues with integrating with our Data Acquisition server and requires separate maintenance. As a result, for a new beamline project, we opted to switch to the Rexroth XM22 controller with T-Zero chopper, which allows for the use of drivers provided by Rexroth in various programming languages. This paper will detail the XM22 controller drivers and explain how to utilize them to read PLC parameters from the controller into the EPICS application and its Phoebus/CSS interface. | ||
Slides TUMBCMO27 [0.389 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO27 | |
About • | Received ※ 08 October 2023 — Revised ※ 12 December 2023 — Accepted ※ 15 December 2023 — Issued ※ 19 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUMBCMO30 | EPICS Based Tool for LLRF Operation Support and Testing | 432 |
|
||
Interruptions in the functioning of linear superconductive accelerators LLRF (Low-Level Radio Frequency) systems can result in significant downtime. This can lead to lost productivity and revenue. Accelerators are foreseen to operate under various conditions and in different operating modes. As such, it is crucial to have flexibility in their operation to adapt to demands. Automation is a potential solution to address these challenges by reducing the need for human intervention and improving the control’s quality over the accelerator. The paper describes EPICS-based tools for LLRF control system testing, optimization, and operations support. The proposed software implements procedures and applications that are usually extensions to the core LLRF systems functionalities and are performed by operators. This facilitates the maintenance of the accelerator and increases its flexibility in adaptation to various work conditions and can increase its availability level. The paper focuses on the architecture of the solution. It also depicts its components related to superconducting cavities parameters identification and elements responsible for their tuning. Since the proposed solution is destined for the European Spallation Source control system, the application has a form of multiple IOCs (Input/Output Controllers) wrapped into E3 (ESS EPICS Environment) modules. Nevertheless, it can be adjusted to other control systems - its logic is universal and applicable (after adaptations) to other LLRF control systems with superconducting cavities. | ||
Slides TUMBCMO30 [0.466 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO30 | |
About • | Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 30 November 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUMBCMO31 | Use of EPICS in Small Laboratories | 437 |
|
||
For some time now, we* have also been using the EPICS** control system in small laboratories in order to be able to guarantee data recording and processing in accordance with the FAIR*** guidelines and thus to increase the overall quality of the data. It was necessary to overcome many reservations and, above all, to counter the prejudice that such systems are only suitable for large-scale installations. We are now trying to communicate the idea behind this kind of data acquisition (distributed systems, open protocols, open file formats, etc.) also in the studies of physicists, chemists and engineers and are extending our activities to universities. We also hope that in the future, users who use the individual user facilities will be able to make optimal use of the options available there. In our talk we will present the use of EPICS in small laboratories.
* https://epics.mpg.de ** https://epics-controls.org *** https://www.fair-di.eu/fairmat/about-fairmat/consortium-fairmat |
||
Slides TUMBCMO31 [0.788 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO31 | |
About • | Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 06 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUMBCMO32 | DevPylon, DevVimba: Game Changers at LULI | 441 |
|
||
Funding: CNRS, École polytechnique, CEA, Sorbonne Université Apollon, LULI2000 and HERA are three Research Infrastructures of the Centre national de la recherche scientifique (CNRS), École polytechnique (X), Commissariat à l’Énergie Atomique et aux Energies Alternatives (CEA) and Sorbonne University (SU). Past-commissioning phase, Apollon is a four beam laser, multi-petawatt laser facility fitted with instrumentation technologies on the cutting edge with two experimental areas (short–up to 1m–and long focal–up to 20m, 32m in the future). To monitor the laser beam characteristics through the interaction chambers, more than 500 devices are distributed in the facility and controlled through a Tango bus. This poster focuses on two linked software components: DevPylon and DevVimba. Each affected to a type of cameras: Basler via PyPylon wrapper interface of Pylon Software suite and Prosilica via Vimba SDK library, respectively. These two Tango devices are Python scripts constructed and generated via POGO. They offer a specific way to monitor more than 100 CCD cameras in the facility at an image acquisition and display rate up to 10Hz for a maximum of 300-shot at 1-minute rate per day and on an always-ON mode throughout the day. |
||
Slides TUMBCMO32 [1.030 MB] | ||
Poster TUMBCMO32 [1.421 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO32 | |
About • | Received ※ 09 October 2023 — Revised ※ 20 November 2023 — Accepted ※ 20 December 2023 — Issued ※ 20 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP009 | Mobile Pumping Units for Particle Free Beam Vacuum | 494 |
|
||
For 10 years our Institute CEA Saclay Irfu has been involved in several in-kind collaboration contracts with ESS at Lund (Sweden) and one of these includes the test of numerous cryomodules in a dedicated test bench designed at Saclay. The cryomodules start to be assembled cavity per cavity in a clean room and must be low pressure pumped, without adding particles and always in a clean room. This is the purpose of the mobile pumping units for particle free beam vacuum. These units are also designed for vacuum automatic procedures, residual gas analysis and can provide conformity reports. Furthermore, a connectable industrial touch panel is added for a mobile operator interface. Only few buttons have to be panel touched by an operator to start automatic procedures in order to get a very high quality vacuum. The embedded control system is PLC based and manages many communications, especially with the spectrometer embedded in the unit. Only one CPU manages all the communications (Profinet, Profibus, TCP-IP ASCII and even Modbus) and sensors or actuators are controlled by four input-output cards. This small-scale control system is innovative because it is versatile, very convenient to use, deploy and maintain. Nine mobile pumping units are operational and continuously used, frequently moved to different locations, controlled locally or remotely and are still reliable. The paper describes the control architecture and functionalities of this small but full of possibilities device. | ||
Poster TUPDP009 [2.568 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP009 | |
About • | Received ※ 29 September 2023 — Revised ※ 11 October 2023 — Accepted ※ 09 December 2023 — Issued ※ 15 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP011 | The Laser Megajoule Full Automated Sequences | 504 |
|
||
The LMJ*, a 176-beam laser facility developed by the French Nuclear Science directorate CEA, is located at the CEA** CESTA site near Bordeaux. The LMJ facility is part of the French Simulation Program. It is designed to deliver about 1.4 MJ of energy on targets, for high energy density physics experiments, including fusion experiments. Since 2022, the LMJ facility aims at carrying out experiments with 12 bundles of 8 laser beams and 12 target diagnostics. In order to achieve daily shots including all the preparatory steps, the LMJ performs night activities from now on and the presence of technical operators is not required. These sequences work on vacuum windows inspection and beam alignment. They take into account all the prerequisites for their good performances and are scheduled automatically one after the other. They deal with material security and unexpected equipment alarms. They endeavour to required tasks success and give a detailed report of the night events to the shot director. This paper gives a presentation of the two sequences with solutions in order to answer the technical specifications and the last enhancements.
*LMJ: Laser MegaJoule **CEA: Commissariat à l’Energie Atomique et aux Energies Alternatives |
||
Poster TUPDP011 [0.771 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP011 | |
About • | Received ※ 02 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 19 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP013 | Status on Continuous Scans at BESSY II | 513 |
|
||
Continuous energy scanning is an important feature for many beamlines at BESSY II. In 2015 this method was used at 11 Undulator and 6 dipol beamlines.[1] Since then the demand for this feature - especially among new build beamlines - increased, while the availability of the used hardware decreased. In order to tackle this problem, we investigate into alternative solutions for both, hardware and software. By introducing an independent high level controller between the two device controllers, we can compensate for communication incompatibilities and hence increase flexibility. This paper shows the status of our research. The ideas leading to a first prototype, the prototype itself and first results will be presented.
[1] A. F. Balzer et al., Status of the Continuous Mode Scan for Undulator Beamlines at BESSY II ,doi:10.18429/JACoW-ICALEPCS2015-THHA3O02 |
||
Poster TUPDP013 [0.855 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP013 | |
About • | Received ※ 06 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 10 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP014 | Bluesky Web Client at Bessy II | 518 |
|
||
Funding: Helmholtz-Zentrum Berlin Considering the existing Bluesky control framework at BESSY II, a web client with React based on Bluesky HTTP Server is being developed. We hope to achieve a cross-platform and cross-device system to realize remote control and monitoring of experiments. The current functions of the system are monitoring of the Bluesky Queue Server status, control over a Bluesky Run Engine environment, browsing of Queue Server history and editing and running of Bluesky plans. Challenges around the presentation of live data are explored. This work builds on that of NSLS II who created a React based web interface and implements a tool for BESSY II. |
||
Poster TUPDP014 [0.311 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP014 | |
About • | Received ※ 29 September 2023 — Accepted ※ 01 December 2023 — Issued ※ 11 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP025 | Board Bring-up with FPGA Framework and ChimeraTK on Yocto | 557 |
|
||
This presentation will showcase our experience in board bring-up using our FPGA Framework and ChimeraTK, our C++ hardware abstraction library. The challenges involved in working with different FPGA vendors will be discussed, as well as how the framework and library help to abstract vendor-specific details to provide a consistent interface for applications. Our approach to integrating this framework and libraries with Yocto, a popular open-source project for building custom Linux distributions, will be discussed. We will show how we leverage Yocto’s flexibility and extensibility to create a customized Linux image that includes our FPGA drivers and tools, and discuss the benefits of this approach for embedded development. Finally, we will share some of our best practices for board bring-up using our framework and library, including tips for debugging and testing. Our experience with FPGA-based board bring-up using ChimeraTK and Yocto should be valuable to anyone interested in developing embedded systems with FPGA technology | ||
Poster TUPDP025 [0.567 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP025 | |
About • | Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 15 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP068 | Implementation of External Delay Calculator to MeerKAT | 658 |
|
||
The MeerKAT is an interferometric array made up of 64 dishes that operate as a unit. The very first corrections that must be made to the incoming signal is that of geometric and cable length delays, collectively called "delays". In summary, this is the adjustment of the time of arrival of the signal at the correlator from all 64 antennas, to operate as one instrument. The signal must be recorded at the same time. The MeerKAT correlator has inbuilt a delay correction mechanism, which records and applies these corrections during observation. In this paper we describe how this solution was evolved when ‘katpoint‘(the underlying library to which the delay corrections dependend) had a change in dependencies itself. There were two major changes to ‘katpoint‘ 1) changing from ‘ephem‘ to ‘astropy‘ for time and location calculations of a telescope and celestial bodies, and 2) the move from python2 to python3. Most of the Control and Monitoring(CAM) codebase was still using python2 at the time. Our team had the mamoth task of porting all the codebase from ‘py2‘ to ‘py3‘. This presented unexpected issues, particularly in our case - as we wanted to retain Python2 - Python3 backward compatibility. In this paper we explore the challenges faced when ‘katpoint‘ started to implement ‘astropy‘ which is implemented in Python3 whist the rest of our code was still in Python2. The technical benefit of this improvement was an improvement in the astrometry for delay calculations which will improve the MeerKAT science images. | ||
Poster TUPDP068 [2.970 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP068 | |
About • | Received ※ 04 October 2023 — Revised ※ 19 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 14 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP069 | AVN Radio Telescope Conversion Software Systems | 661 |
|
||
The African VLBI Network (AVN) is a proposed network of Radio Telescopes involving 8 partner countries across the African continent. The AVN project aims to convert redundant satellite data communications ground stations, where viable, to Radio Telescopes. One of the main objectives of AVN is human capital development in Science, Engineering, Technology and Mathematics (STEM) with regards to radio astronomy in SKA (Square Kilometer Array) African Partner countries. This paper will outline the software systems used for control and monitoring of a single radio telescope. The control and monitoring software consists of the User Interface, Antenna Control System, Receiver Control System and monitoring of all proprietary and off-the-shelf (OTS) components. All proprietary and OTS interfaces are converted to the open protocol (KATCP). | ||
Poster TUPDP069 [10.698 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP069 | |
About • | Received ※ 20 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 28 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP073 | CAN Monitoring Software for an Antenna Positioner Emulator | 673 |
|
||
Funding: South African Radio Astronomy Observatory The original Controller Area Network (CAN) protocol, was developed for control and monitoring within vehicular systems. It has since been expanded and today, the Open CAN bus protocol is a leading protocol used within servo-control systems for telescope positioning systems. Development of a CAN bus monitoring component is currently underway. This component forms part of a greater software package, designed for an Antenna Positioner Emulator (APE), which is under construction. The APE will mimic movement of a MeerKAT antenna, in both the azimuth and elevation axes, as well as the positioning of the receiver indexer. It will be fitted with the same servo-drives and controller hardware as MeerKAT, however there will be no main dish, sub-reflector, or receiver. The APE monitoring software will receive data from a variety of communication protocols used by different devices within the MeerKAT control system, these include: CAN, Profibus, EnDAT, Resolver and Hiperface data. The monitoring software will run on a BeagleBone Black (BBB) fitted with an ARM processor. Local and remote logging capabilities are provided along with a user interface to initiate the reception of data. The CAN component makes use of the standard SocketCAN driver which is shipped as part of the linux kernel. Initial laboratory tests have been conducted using a CAN system bus adapter that transmits previously captured telescope data. The bespoke CAN receiver hardware connects in-line on the CAN bus and produces the data to a BBB, where the monitoring software logs the data. |
||
Poster TUPDP073 [1.521 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP073 | |
About • | Received ※ 06 October 2023 — Revised ※ 20 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 18 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP080 | Automated Procedure for Conditioning of Normal Conducting Accelerator Cavities | 699 |
|
||
Radio frequency (RF) conditioning is an essential stage during the preparation of particle accelerator cavities for operation. During this process the cavity field is gradually increased to the nominal parameters enabling the outgassing of the cavity and the elimination of surface defects through electrical arcing. However, this process can be time-consuming and labor-intensive, requiring skilled operators to carefully adjust the RF parameters. This proceeding presents the software tools for the development of an automatized EPICS control application with the aim to accelerate and introduce flexibility to the conditioning process. The results from the conditioning process of the ESS Radio-Frequency Quadrupole (RFQ) and the parallel conditioning of Drift-Tube Linac (DTL) tanks will be presented demonstrating the potential to save considerable time and resources in future RF conditioning campaigns. | ||
Poster TUPDP080 [17.411 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP080 | |
About • | Received ※ 04 October 2023 — Accepted ※ 12 December 2023 — Issued ※ 13 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP083 | DAQ System Based on Tango, Sardana and PandABox for Millisecond Time Resolved Experiment at the CoSAXS Beamline of MAX IV Laboratory | 713 |
|
||
CoSAXS is the Coherent and Small Angle X-ray Scattering (SAXS) beamline placed at the diffraction-limited 3 GeV storage ring at MAX IV Laboratory. The beamline can deliver a very high photon flux ~1013 ph/s and it is equipped with state-of-the-art pixel detectors, suitable for experiments with a high time-resolution to be performed. In this work we present the upgraded beamline data acquisition strategy for a millisecond time-resolved SAXS/WAXS experiment, using laser light to induce temperature jumps or UV-excitation with the consequent structural changes on the system. In general terms, the beamline control system is based on TANGO and built on top of it, Sardana provides an advanced scan framework. In order to synchronize the laser light pulse on the sample, the X-ray fast shutter opening time and the X-ray detectors readout, hardware triggers are used. The implementation is done using PandABox, which generates the pulse train for the laser and for all active experimental channels, such as counters and detectors, in synchronization with the fast shutter opening time. PandABox integration is done with a Sardana Trigger Gate Controller, used to configure the pulses parameters as well to orchestrate the hardware triggers during a scan. This paper describes the experiment orchestration, laser light synchronization with multiple X-ray detector. | ||
Poster TUPDP083 [1.645 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP083 | |
About • | Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP087 | Enhancing Measurement Quality in HL-LHC Magnets Testing Using Software Techniques on Digital Multimeter Cards-Based System | 729 |
|
||
The HL-LHC magnets play a critical role in the High-Luminosity Large Hadron Collider project, which aims to increase the luminosity of the LHC and enable more precise studies of fundamental physics. Ensuring the performance and reliability of these magnets requires high-precision measurements of their electrical properties during testing. To meet the R&D program needs of the new superconducting magnet technology, an accurate and generic voltage measurement system was developed after the testing and validation campaign of the LHC magnets. The system was based on a set of digital multimeter (DMM) cards installed in a PXI modular chassis and controlled using CERN’s in-house software development. It allowed for the measurement of the electrical properties of the magnet prototypes during their study phase. However, during the renovation of the magnet test benches and in preparation for the HL-LHC magnet series measurement, some limitations and instabilities were discovered during long recording measurements. As a result, it was decided to redesign the measurement system. The emergence and promises of the new PXIe platform, along with the requirement to build eight new systems to be operated similarly to the existing four, led to a complete redesign of the software. This article describes the various software techniques employed to address platform compatibility issues and significantly improve measurement accuracy, thus ensuring the reliability and quality of the data obtained from the HL-LHC magnet tests. | ||
Poster TUPDP087 [6.660 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP087 | |
About • | Received ※ 02 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 13 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP088 | Labview-Based Template for Enhanced Accelerator Systems Control: Software Solutions for the CERN-ISOLDE Facilities | 735 |
|
||
ISOLDE is part of the experimental infrastructure with-in the CERN accelerator complex that provides radioac-tive ion beams for studies of fundamental nuclear phys-ics, astrophysics, condensed matter physics and medical applications. Complementing the available controls in-frastructure, an easy-to-use set of applications was devel-oped to allow operators to record and display signals from multiple sources, as well as to provide drivers for non-standard, custom-made instruments and specialized off-the-shelf components. Aimed not only at software engineers but developers with any background, a generic and modular software template was developed in LabVIEW following a collab-oration between CERN and ANGARA Technology. This unified template can be extended to support interaction with any instrument and any newly developed applica-tion can be easily added to the existing control system and integrated into the CERN control and monitoring infrastructure. New modules and instrument drivers are easy to maintain as the structure and communication layers are all derived from the same template and based on the same components. In this paper, we will explain the implementation, ar-chitecture and structure of the template, as well as a wide variety of use cases - from motor control to image acquisi-tion and laser-specific equipment control. We will also show use cases of applications developed and deployed within a few days in the ISOLDE facility. | ||
Poster TUPDP088 [0.860 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP088 | |
About • | Received ※ 20 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 23 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP094 | EPICS NTTables for Machine Timing Configuration | 767 |
|
||
The European Spallation Source (ESS), currently under construction and initial commissioning in Lund, Sweden, will be the brightest spallation neutron source in the world, when its driving proton linac achieves the design power of 5 MW at 2 GeV. Such a high power requires production, efficient acceleration, and almost no-loss transport of a high current beam, thus making the design and beam commissioning of this machine challenging. The recent commissioning runs (2021-2023) showed an enhanced need for a consistent and robust way of setting up the machine for beam production. One of the big challenges at ESS beam operations is aligning the machine setup and the timing setup limiting the need for operator actions. In this paper, we show a concept of using EPICS 7 NTTables to enable this machine settings consistency. Along with that, we also highlight a few challenges related to other EPICS tools like Save and Restore and Archiver. | ||
Poster TUPDP094 [0.682 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP094 | |
About • | Received ※ 04 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 08 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP098 | Automatic Conditioning of High Voltage Pulsed Magnets | 780 |
|
||
Fast pulsed kicker magnets are used across the various accelerators of CERN complex to inject and extract the beam. These kicker magnets, powered by high voltage pulsed generators and under vacuum, are prone to electrical breakdown during the pulse. To prepare the kicker magnet for reliable operation, or in case an electrical breakdown occurred, a conditioning is necessary: the magnet is pulsed gradually increasing the pulse voltage and length up to a value beyond operational conditions. This is a lengthy process that requires kicker experts on site to manually control the pulse voltage and length, and monitor the vacuum activity. For the start of LHC operation, a first automatic conditioning system was deployed on injection kicker magnet (MKI). Configurable voltage and pulse length ramps are automatically performed by the controller. In case abnormal vacuum activity occurs, the voltage is reduced and then the process continues. Based on this experience, a standardised algorithm has been developed, adding new features such as logarithmic ramp, or simulation of the whole conditioning cycle with test of reaction to vacuum activity. This new automatic conditioning system was deployed on several kicker systems across various CERN accelerators, allowing smoother conditioning, and great reduction on manpower. It also offers the possibility for further automate kicker system operation, starting automatically a magnet conditioning when needed without intervention of kickers experts, similarly as what was deployed for SPS Beam Dump System. | ||
Poster TUPDP098 [0.328 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP098 | |
About • | Received ※ 06 October 2023 — Revised ※ 21 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 17 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP099 | Spark Activity Monitoring for LHC Beam Dump System | 784 |
|
||
LHC Beam Dump System is composed of 25 fast-pulsed magnets per beam to extract and dilute the beam onto an external absorber block. Each magnet is powered by a high voltage generator to discharge the energy stored in capacitors into the magnet by using high voltage switches. These switches are housed in air in cabinets which are not dust protected. In the past years of LHC operation, we noticed electrical sparks on the high voltage switch due to the release of accumulated charges on the surfaces of the insulators and the switches. These sparks can potentially cause self-trigger of the generators increasing the risk of asynchronous dumps which should be avoided as much as possible. In order to detect dangerous spark activity in the generators before a self-trigger occurs, a Spark Activity Monitoring (SAM) system was developed. SAM consists of 50 detection and acquisition systems deployed at the level of each high voltage generator, and one external global surveillance process. The detection and acquisition systems are based on digitisers to detect and capture spark waveforms coming from current pick-ups placed in various electrical paths inside each generator. The global surveillance process is collecting data from all the acquisition systems in order to assess the risk of self-trigger based on the detected sparks amplitude and rate. This paper describes the architecture, implementation, optimisation, deployment and operational experience of the SAM system. | ||
Poster TUPDP099 [1.334 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP099 | |
About • | Received ※ 06 October 2023 — Revised ※ 21 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 09 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP104 | Progress Towards the Commissioning and Installation of the 2PACL CO₂ Cooling Control Systems for Phase II Upgrade of the ATLAS and CMS Experiments | 802 |
|
||
In the scope of the High Luminosity program of the Large Hadron Collider at CERN, the ATLAS and CMS experiments are advancing the preparation for the production, commissioning and installation of their new environment-friendly low-temperature detector cooling systems for their new trackers, calorimeters and timing layers. The selected secondary ¿on-detector¿ CO₂ pumped loop concept is the evolution of the successful 2PACL technique allowing for oil-free, stable, low-temperature control. The new systems are of unprecedented scale and largely more complex for both mechanics and controls than installations of today. This paper will present a general system overview and the technical progress achieved by the EP-DT group at CERN over the last few years in the development and construction of the future CO₂ cooling systems for silicon detectors at AT-LAS and CMS. We will describe in detail a homogenised infrastructure and control system architecture which spreads between surface and underground and has been applied to both experiments. Systems will be equipped with multi-level redundancy (electrical, mechanical and control) described in detail herein. We will discuss numerous controls-related challenges faced during the prototyping program and solutions deployed that spread from electrical design organization to instrumentation selection and PLC programming. We will finally present how we plan to organise commissioning and system performance check out. | ||
Poster TUPDP104 [4.328 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP104 | |
About • | Received ※ 01 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 08 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP106 | SwissFEL Resonant Kicker Control System | 813 |
|
||
SwissFEL X-ray Free Electron Laser at the Paul Scherrer Institute is a user facility designed to run in two electron bunch mode in order to serve simultaneously two experimental beamline stations. Two closely spaced (28 ns) electron bunches are accelerated in one RF macro pulse up to 3 GeV. A high stability resonant kicker system and a Lambertson septum magnet are used to separate the bunches and to send them to the respective beamlines[1]. The resonant kickers control system consists of various hardware and software components whose tasks are the synchronization of the kickers with the electron beam, pulse-to-pulse amplitude and phase measurement, generating pulsed RF power to excite a resonating deflection current, as well as movement of the mechanical tuning vanes of the resonant kickers. The feedback software monitors and controls all the important parameters. We present the integration solutions of these components into EPICS. | ||
Poster TUPDP106 [2.025 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP106 | |
About • | Received ※ 03 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP131 | Longitudinal Feedback for the LCLS-II Superconducting Linear Accelerator at SLAC | 895 |
|
||
Funding: U.S. Department of Energy under Grant No. DE-AC02-76SF00515 SLAC recently commissioned a new continuous-wave, MHz repetition-rate Superconducting (SC) Linear Accelerator (Linac). This accelerator can produce a 4 GeV electron beam that drives two dedicated Hard and Soft X-ray Undulator lines as part of the Linac Coherent Light Source (LCLS) Free Electron Laser. A new Python-based longitudinal feedback is used to control the electron beam energy and bunch length along the accelerator. This feedback was written to be simple, easily maintainable and easily portable for use on other accelerators or systems as a general-purpose feedback with minimal dependencies. Design and operational results of the feedback will be discussed, along with the Graphical User Interfaces built using Python Display Manager (PyDM). |
||
Poster TUPDP131 [2.221 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP131 | |
About • | Received ※ 29 September 2023 — Revised ※ 12 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 14 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP145 | Position-Based Continuous Energy Scan Status at MAX IV | 917 |
|
||
The traditional approach of step scanning in X-ray experiments is often inefficient and may increase the risk of sample radiation damage. In order to overcome these challenges, a new position-based continuous energy scanning system has been developed at MAX IV Laboratory. This system enables stable and repeatable measurements by continuously moving the motors during the scan. Triggers are generated in hardware based on the motor encoder positions to ensure precise data acquisition. Prior to the scan, a list of positions is generated, and triggers are produced as each position is reached. The system uses Tango and Sardana for control and a TriggerGate controller to calculate motor positions and configure the PandABox, which generates the triggers. The system is capable of scanning a single motor, such as a sample positioner, or a combined motion like a monochromator and undulator. In addition, the system can use the parametric trajectory mode of IcePAP driver, which enables continuous scans of coupled axes with non-linear paths. This paper presents the current status of the position-based continuous energy scanning system for BioMAX, FlexPES, and FinEst beamlines at MAX IV and discusses its potential to enhance the efficiency and accuracy of data acquisition at beamline endstations. | ||
Poster TUPDP145 [1.943 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP145 | |
About • | Received ※ 05 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 11 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUSDSC03 | Integrating Tools to Aid the Automation of PLC Development Within the TwinCat Environment | 925 |
|
||
Within the myriad of day to day activities, a consistent and standardised code base can be hard to achieve, especially when a diverse array of developers across different fields are involved. By creating tools and wizards, it becomes possible to guide the developer and/or user through many of the development and generic tasks associated with a Programmable Logic Controller (PLC). At the European X-Ray Free Electron Laser Facility (EuXFEL), we have striven to achieve structure and consistency within the PLC framework through the use of C# tools which are embedded into the TwinCAT environment (Visual Studio) as extensions. These tools aid PLC development and deployment, and provide a clean and consistent way to develop, configure and integrate code from the hardware level, to the Supervisory Control And Data Acquisition (SCADA) system. | ||
Poster TUSDSC03 [0.137 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUSDSC03 | |
About • | Received ※ 05 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 12 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUSDSC04 | State Machine Operation of Complex Systems | 929 |
|
||
Operation of complex systems which depend on one or more other systems with many process variables often operate in more than one state. For each state there may be a variety of parameters of interest, and for each of these, one may require different alarm limits, different archiving needs, and have different critical parameters. Relying on operators to reliably change 10s-1000s of parameters for each system for each state is unreasonable. Not changing these parameters results in alarms being ignored or disabled, critical changes missed, and/or possible data archiving problems. To reliably manage the operation of complex systems, such as cryomodules (CMs), Fermilab is implementing state machines for each CM and an over-arching state machine for the PIP-II superconducting linac (SCL). The state machine transitions and operating parameters are stored/restored to/from a configuration database. Proper implementation of the state machines will not only ensure safe and reliable operation of the CMs, but will help ensure reliable data quality. A description of PIP-II SCL, details of the state machines, and lessons learned from limited use of the state machines in recent CM testing will be discussed. | ||
Slides TUSDSC04 [6.117 MB] | ||
Poster TUSDSC04 [1.031 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUSDSC04 | |
About • | Received ※ 06 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 17 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |