Author: Serrano, J.
Paper Title Page
MO4AO02 HydRA: A System-on-Chip to Run Software in Radiation-Exposed Areas 217
 
  • T. Gingold, G. Daniluk, J. Serrano, T. Włostowski
    CERN, Meyrin, Switzerland
  • M. Rizzi
    PSI, Villigen PSI, Switzerland
 
  In the context of the High-Luminosity LHC project at CERN, a platform has been developed to support groups needing to host electronics in radiation-exposed areas. This platform, called DI/OT, is based on a modular kit consisting of a System Board, Peripheral Boards and a radiation-tolerant power converter, all housed in a standard 3U crate. Groups customise their systems by designing Peripheral Boards and developing custom gateware and software for the System Board, featuring an IGLOO2 flash-based FPGA. It is compulsory for gateware designs to be radiation-tested in dedicated facilities before deployment. This process can be cumbersome and affects iteration time because access to radiation testing facilities is a scarce commodity. To make customisation more agile, we have developed a radiation-tolerant System-on-Chip (SoC), so that a single gateware design, extensively validated, can serve as a basis for different applications by just changing the software running in the processing unit of the SoC. HydRA (Hydra-like Resilient Architecture) features a triplicated RISC-V processor for safely running software in a radiation environment. This paper describes the overall context for the project, and then moves on to provide detailed explanations of all the design decisions for making HydRA radiation-tolerant, including the protection of programme and data memories. Test harnesses are also described, along with a summary of the test results so far. It concludes with ideas for further development and plans for deployment in the LHC.
https://ohwr.org/project/hydra/wikis/home
https://ohwr.org/project/diot/wikis/home
 
slides icon Slides MO4AO02 [11.131 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO4AO02  
About • Received ※ 06 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 27 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2BCO04 SAMbuCa: Sensors Acquisition and Motion Control Framework at CERN 1179
 
  • A. Masi, O.Ø. Andreassen, M. Arruat, M. Di Castro, R. Ferraro, I. Kozsar, E.W. Matheson, J.P. Palluel, P. Peronnard, J. Serrano, J. Tagg, F. Vaga, E. Van der Bij
    CERN, Meyrin, Switzerland
  • S. Danzeca, M. Donzé, S.F. Fargier, M. Gulin, E. Soria
    European Organization for Nuclear Research (CERN), Geneva, Switzerland
 
  Motion control systems at CERN often have challenging requirements, such as high precision in extremely radioactive environments with millisecond synchronization. These demanding specifications are particularly relevant for Beam Intercepting Devices (BIDs) such as the collimators of the Large Hadron Collider (LHC). Control electronics must be installed in safe areas, hundreds of meters away from the sensors and actuators while conventional industrial systems only work with cable lengths up to a few tens of meters. To address this, several years of R&D have been committed to developing a high precision motion control system. This has resulted in specialized radiation-hard actuators, new sensors, novel algorithms and actuator control solutions capable of operating in this challenging environment. The current LHC Collimator installation is based on off-the-shelf components from National Instruments. During the Long Shutdown 3 (LS3 2026-2028), the existing systems will be replaced by a new high-performance Sensors Acquisition and Motion Control system (SAMbuCa). SAMbuCa represents a complete, in-house developed, flexible and modular solution, able to cope with the demanding requirements of motion control at CERN, and incorporating the R&D achievements and operational experience of the last 15 years controlling more than 1200 axes at CERN. In this paper, the hardware and software architectures, their building blocks and design are described in detail.  
slides icon Slides TH2BCO04 [5.775 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH2BCO04  
About • Received ※ 05 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 19 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)