Author: Jamilkowski, J.P.
Paper Title Page
MO1BCO04 EIC Controls System Architecture Status and Plans 19
 
  • J.P. Jamilkowski, S.L. Clark, M.R. Costanzo, T. D’Ottavio, M. Harvey, K. Mernick, S. Nemesure, F. Severino, K. Shroff
    BNL, Upton, New York, USA
  • L.R. Dalesio
    Osprey DCS LLC, Ocean City, USA
  • K. Kulmatycski, C. Montag, V.H. Ranjbar, K.S. Smith
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Contract Number DE-AC02-98CH10886 with the auspices of the US Department of Energy
Preparations are underway to build the Electron Ion Collider (EIC) once Relativistic Heavy Ion Collider (RHIC) beam operations are end in 2025, providing an enhanced probe into the building blocks of nuclear physics for decades into the future. With commissioning of the new facility in mind, Accelerator Controls will require modernization in order to keep up with recent improvements in the field as well as to match the fundamental requirements of the accelerators that will be constructed. We will describe the status of the Controls System architecture that has been developed and prototyped for EIC, as well as plans for future work. Major influences on the requirements will be discussed, including EIC Common Platform applications as well as our expectation that we’ll need to support a hybrid environment covering both the proprietary RHIC Accelerator Device Object (ADO) environment as well as EPICS.
 
slides icon Slides MO1BCO04 [1.458 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO1BCO04  
About • Received ※ 05 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 11 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO07 Reflective Servers: Seamless Offloading of Resource Intensive Data Delivery 1201
 
  • S.L. Clark, T. D’Ottavio, M. Harvey, J.P. Jamilkowski, J. Morris, S. Nemesure
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Brookhaven National Laboratory’s Collider-Accelerator Department houses over 550 Front-End Computers (FECs) of varying specifications and resource requirements. These FECs provide operations-critical functions to the complex, and uptime is a concern among the most resource constrained units. Asynchronous data delivery is widely used by applications to provide live feedback of current conditions but contributes significantly towards resource exhaustion of FECs. To provide a balance of performance and efficiency, the Reflective system has been developed to support unrestricted use of asynchronous data delivery with even the most resource constrained FECs in the complex. The Reflective system provides components which work in unison to offload responsibilities typically handled by core controls infrastructure to hosts with the resources necessary to handle heavier workloads. The Reflective system aims to be a drop-in component of the controls system, requiring few modifications and remaining completely transparent to users and applications alike.
 
slides icon Slides THMBCMO07 [0.963 MB]  
poster icon Poster THMBCMO07 [6.670 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO07  
About • Received ※ 04 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 15 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR2AO04 A Physics-Based Simulator to Facilitate Reinforcement Learning in the RHIC Accelerator Complex 1630
 
  • L.K. Nguyen, K.A. Brown, M.R. Costanzo, Y. Gao, M. Harvey, J.P. Jamilkowski, J. Morris, V. Schoefer
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The successful use of machine learning (ML) in particle accelerators has greatly expanded in recent years; however, the realities of operations often mean very limited machine availability for ML development, impeding its progress in many cases. This paper presents a framework for exploiting physics-based simulations, coupled with real machine data structure, to facilitate the investigation and implementation of reinforcement learning (RL) algorithms, using the longitudinal bunch-merge process in the Booster and Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) as examples. Here, an initial fake wall current monitor (WCM) signal is fed through a noisy physics-based model simulating the behavior of bunches in the accelerator under given RF parameters and external perturbations between WCM samples; the resulting output becomes the input for the RL algorithm and subsequent pass through the simulated ring, whose RF parameters have been modified by the RL algorithm. This process continues until an optimal policy for the RF bunch merge gymnastics has been learned for injecting bunches with the required intensity and emittance into the Relativistic Heavy Ion Collider (RHIC), according to the physics model. Robustness of the RL algorithm can be evaluated by introducing other drifts and noisy scenarios before the algorithm is deployed and final optimization occurs in the field.
 
slides icon Slides FR2AO04 [2.694 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2AO04  
About • Received ※ 04 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 16 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1BCO01 VME2E: VME to Ethernet - Common Hardware Platform for legacy VME Module Upgrade 949
 
  • J.P. Jamilkowski
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Tian
    BNL, Upton, New York, USA
 
  Funding: DOE Office of Science
VME architecture was developed in late 1970s. It has proved to be a rugged control system hardware platform for the last four decades. Today the VME hardware platform is facing four challenges from 1) backplane communication speed bottleneck; 2) computing power limits from centralized computing infrastructure; 3) obsolescence and cost issues to support a real-time operating system; 4) obsolescence issues of the legacy VME hardware. The next generation hardware platform such as ATCA and microTCA requires fundamental changes in hardware and software. It also needs large investment. For many legacy system upgrades, this approach is not applicable. We will discuss an open-source hardware platform, VME2E (VME to Ethernet), which allows the one-to-one replacement of legacy VME module without disassembling of the existing VME system. The VME2E has the VME form factor. It can be installed the existing VME chassis, but without use the VME backplane to communicate with the front-end computer and therefore solves the first three challenges listed above. The VME2E will only take advantage of two good benefits from a VME system: stable power supply which VME2E module will get from the backplane, and the cooling environment. The VME2E will have the most advanced 14nm Xilinx FPGA SOM with GigE for parallel computing and high speed communication. It has a high pin count (HPC) FPGA mezzanine connector (FMC) to benefit the IO daughter boards supply of the FMC ecosystem. The VME2E is designed as a low cost, open-source common platform for legacy VME upgrade.
 
slides icon Slides WE1BCO01 [1.141 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE1BCO01  
About • Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 19 November 2023 — Issued ※ 22 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)