Author: Brendike, M.
Paper Title Page
TUPDP013 Status on Continuous Scans at BESSY II 513
 
  • N. Greve, M. Brendike, D.K. Kraft, M. Neu, G. Pfeiffer
    HZB, Berlin, Germany
 
  Continuous energy scanning is an important feature for many beamlines at BESSY II. In 2015 this method was used at 11 Undulator and 6 dipol beamlines.[1] Since then the demand for this feature - especially among new build beamlines - increased, while the availability of the used hardware decreased. In order to tackle this problem, we investigate into alternative solutions for both, hardware and software. By introducing an independent high level controller between the two device controllers, we can compensate for communication incompatibilities and hence increase flexibility. This paper shows the status of our research. The ideas leading to a first prototype, the prototype itself and first results will be presented.
[1] A. F. Balzer et al., Status of the Continuous Mode Scan for Undulator Beamlines at BESSY II ,doi:10.18429/JACoW-ICALEPCS2015-THHA3O02
 
poster icon Poster TUPDP013 [0.855 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP013  
About • Received ※ 06 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 10 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP015 Test Bench for Motor and Motion Controller Characterization 522
 
  • D.K. Kraft, M. Brendike
    HZB, Berlin, Germany
 
  To maximize beamtime usage motorization of beamline equipment is crucial. Choosing the correct motor is complex, since performance depends largely on the combination of motor and motion controller [1]. This challenge, alongside renewing the twenty years old infrastructure at BESSY II, led to the demand for a motor testbench. The testbench was designed to be modular, so it fits different motors, loads and sensors. It allows independent performance verification and enables us to find a fitting combination of motor and motion controller. The testbench is operated via EPICS and Bluesky, allowing us usage of python for automated data acquisition and testing. An overview of the mechanical and electrical setup, as well as some data from different performance tests will be presented.
[1]A.Hughes , B.Drury, ’Electric Motors and Drivers: Fundamentals, Types and Applications’, Fifth Edition, Kidlington, United Kingdom, 2019, pp. 41-86.
 
poster icon Poster TUPDP015 [1.295 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP015  
About • Received ※ 06 October 2023 — Revised ※ 13 October 2023 — Accepted ※ 02 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP013 EPICS Integration for Rapid Control Prototyping Hardware from Speedgoat 1317
 
  • L. Rossa, M. Brendike
    HZB, Berlin, Germany
 
  To exploit the full potential of fourth generation Synchrotron Sources, new beamline instrumentation is increasingly developed with a mechatronics approach. [*,**,***] Implementing this approach raises the need for Rapid Control Prototyping (RCP) and Hardware-In-the-Loop (HIL) simulations. To integrate such RCP and HIL systems into every-day beamline operation we developed an interface from a Speedgoat real-time performance machine - programmable via MATLAB Simulink - to EPICS. The interface was developed to be simple to use and still flexible. The Simulink software developer uses dedicated Simulink-blocks to export model information and real-time data into structured UDP Ethernet frames. The corresponding EPICS IOC listens to the UDP frames and auto-generates a corresponding database file to fit the data-stream from the Simulink model. The EPICS IOC can run on either a beamline measurement PC or to keep things spatially close on a mini PC (such as a Raspberry Pi) attached to the Speedgoat machine. An overview of the interface idea, architecture and implementation, together with some simple examples will be presented.
* https://doi.org/10.18429/JACoW-MEDSI2016-MOPE19
** https://doi.org/10.18429/JACoW-ICALEPCS2019-TUCPL05
*** https://orbi.uliege.be/bitstream/2268/262789/1/TUIO02.pdf
 
poster icon Poster THPDP013 [1.143 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP013  
About • Received ※ 29 September 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)