Author: Schlarb, H.
Paper Title Page
MO2BCO02 Concept and Design of an Extensible Middle-Layer Application Framework for Accelerator Operations and Development 30
 
  • M. Schütte, J. Georg, A. Grünhagen, H. Schlarb
    DESY, Hamburg, Germany
 
  Data collection and analysis are becoming increasingly vital not only for the experiments conducted with particle accelerators but also for their operation, maintenance, and development. Due to lack of feasible alternatives, experts regularly resort to writing task-specific scripts to perform actions such as (event triggered or temporary) data collection, system failure detection and recovery, and even simple high-level feedbacks. Often, these scripts are not shared and are deemed to have little reuse value, giving them a short lifetime and causing redundant work. We report on a modular Python framework for constructing middle-layer applications from a library of parameterized functionality blocks (modules) by writing a simple configuration file in a human-oriented format. This encourages the creation of maintainable and reusable modules while offering an increasingly powerful and flexible platform that has few requirements to the user. A core engine instantiates the modules according to the configuration file, collects the required data from the control system and distributes it to the individual module instances for processing. Additionally, a publisher-subscriber messaging system is provided for inter-module communication. We discuss architecture & design choices, current state and future goals of the framework as well as real use-case examples from the European XFEL.  
slides icon Slides MO2BCO02 [1.915 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2BCO02  
About • Received ※ 05 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 30 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP018 The Timing System for PETRA IV 1335
 
  • T. Wilksen, V. Andrei, K. Brede, H.T. Duhme, M. Fenner, U. Hurdelbrink, J.M. Jäger, H. Kay, H. Lippek, F. Ludwig, M. Pawelzik, S. Ruzin, H. Schlarb
    DESY, Hamburg, Germany
 
  At DESY, the PETRA III synchrotron light source upgrade towards a fourth-generation, low-emittance machine PETRA IV is being pursued. The realisation of the new machine requires a complete redesign of the timing system, as the beam quality and beam control requirements will change significantly. The new timing system must generate and distribute facility-wide precise clocks, trigger signals, trigger events and beam-synchronous information. The design of the main hardware components will be based on the MTCA.4 standard, which has become a well-established platform at DESY and successfully been in use with DESY FEL’s MTCA.4-based timing systems for almost a decade now. This paper presents and discusses the PETRA IV timing system overall concept and functionality and its hardware components development status.  
poster icon Poster THPDP018 [1.259 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP018  
About • Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 16 October 2023 — Issued ※ 26 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)