Author: Pinto, A.
Paper Title Page
WE3BCO06 Assonant: A Beamline-Agnostic Event Processing Engine for Data Collection and Standardization 1025
 
  • P.B. Mausbach, E.X. Miqueles, A. Pinto
    LNLS, Campinas, Brazil
 
  Synchrotron radiation facilities comprise beamlines designed to perform a wide range of X-ray experimental techniques which require complex instruments to monitor thermodynamic variables, sample-related variables, among others. Thus, synchrotron beamlines can produce heterogeneous sets of data and metadata, hereafter referred to as data, which impose several challenges to standardizing them. For open science and FAIR principles, such standardization is paramount for research reproducibility, besides accelerating the development of scalable and reusable data-driven solutions. To address this issue, the Assonant was devised to collect and standardize the data produced at beamlines of Sirius, the Brazilian fourth-generation synchrotron light source. This solution enables a NeXus-compliant technique-centric data standard at Sirius transparently for beamline teams by removing the burden of standardization tasks from them and providing a unified standardization solution for several techniques at Sirius. The Assonant implements a software interface to abstract data format-related specificities and to send the produced data to an event-driven infrastructure composed of streaming processing and microservices, able to transform the data flow according to NeXus*. This paper presents the development process of Assonant, the strategy adopted to standardize beamlines with different operating stages, and challenges faced during the standardization process for macromolecular crystallography and imaging data at Sirius.
* M. Könnecke et al., ’The nexus data format’, Journal of applied crystallography, vol. 48, no. 1, pp. 301-305, 2015.
 
slides icon Slides WE3BCO06 [4.909 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO06  
About • Received ※ 05 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 18 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO07 Extending the ICAT Metadata Catalogue to New Scientific Use Cases 1033
 
  • A. Götz, M. Bodin, A. De Maria Antolinos, M. Gaonach
    ESRF, Grenoble, France
  • M. AlMohammad, S.A. Matalgah
    SESAME, Allan, Jordan
  • P. Austin, V. Bozhinov, L.E. Davies, A. Gonzalez Beltran, K.S. Phipps
    STFC/RAL/SCD, Didcot, United Kingdom
  • R. Cabezas Quirós
    ALBA-CELLS, Cerdanyola del Vallès, Spain
  • R. Krahl
    HZB, Berlin, Germany
  • A. Pinto
    LNLS, Campinas, Brazil
  • K. Syder
    DLS, Oxfordshire, United Kingdom
 
  The ICAT metadata catalogue is a flexible solution for managing scientific metadata and data from a wide variety of domains following the FAIR data principles. This paper will present an update of recent developments of the ICAT metadata catalogue and the latest status of the ICAT collaboration. ICAT was originally developed by UK Science and Technology Facilities Council (STFC) to manage the scientific data of ISIS Neutron and Muon Source and Diamond Light Source. They have since been joined by a number of other institutes including ESRF, HZB, SESAME, and ALBA who together now form the ICAT Collaboration [1]. ICAT has been used to manage petabytes of scientific data for ISIS, DLS, ESRF, HZB, and in the future SESAME and ALBA and make these data FAIR. The latest version of the ICAT core as well as the new user interfaces, DataGateway and DataHub, and extensions to ICAT for implementing free text searching, a common search interface across Photon and Neutron catalogues, a protocol-based interface that allows making the metadata available for findability, electronic logbooks, sample tracking, and web-based data and domain specific viewers developed by the community will be presented. Finally recent developments to use ICAT to develop applications for processed data with rich metadata in the fields of small angle scattering, macromolecular crystallography and cryo-electron microscopy will be described. [1] https://icatproject.org  
slides icon Slides WE3BCO07 [7.888 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO07  
About • Received ※ 05 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)