Author: Lekganyane, J.L.
Paper Title Page
TUSDSC06 Components of a Scale Training Telescope for Radio Astronomy Training 933
 
  • A.C. Linde, X.P. Baloyi, P. Dube, J.L. Lekganyane, AM. Lethole, V. Mlipha, P.J. Pretorius, US. Silere, S.S. Sithole
    SARAO, Cape Town, South Africa
 
  To establish the engineering and science background of radio astronomy in SKA African partner countries, a need was identified to develop a training telescope which would serve as a vehicle for demonstrating the principles. The Scale Training Telescope (STT) will be used as an interactive teaching tool for the basics of antenna structure and antenna control, both in the design, assembly and operation of the radio antenna. The antenna aims to work as closely to a real radio telescope antenna as possible. The STT allows students at various academic levels in different educational institutions the ability to access an antenna design that can be assembled and operated by the students. The paper will describe the mechanical, electrical and software elements of the STT. The mechanical elements range from the structural base to the rotating dish of the radio telescope antenna. The electrical elements incorporate the electromechanical components used to move the antenna as well as the wiring and powering of the antenna. The software is used to control the antenna system as well as collect, process and visualise the resulting data. A software-based user interface will allow the students to control and monitor the antenna system. The PLC-based (Programmable Logic Controller) control system facilitates the motion control of the antenna, in both the azimuth and elevation axes.  
poster icon Poster TUSDSC06 [0.760 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUSDSC06  
About • Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP047 ELK Stack Deployment with Ansible 1411
 
  • T. Gatsi, X.P. Baloyi, J.L. Lekganyane, R.L. Schwartz
    SARAO, Cape Town, South Africa
 
  The 64-dish MeerKAT radio telescope, constructed in South Africa, became the largest and most sensitive radio telescope in the Southern Hemisphere until integrated with the Square Kilometer Array (SKA). Our Control and Monitoring system for Radio Astronomy Project such as MeerKAT produces a lot of data and logs that require proper handling. Viewing and analysis to trace and track system issues and as well as investigate technical software issues require one to go back in time to look for event occurrence. We therefore deployed an ELK software stack ( Elasticsearch, Kibana, Logstash) using Ansible in order to have the capability to aggregate system process logs. We deploy the stack as a cluster comprising lxc containers running inside a Proxmox Virtual Environment using Ansible as a software deployment tool. Each container in the cluster performs cluster duties such as deciding where to place index shards and when to move them. Each container is a data node that makes up the heart of the cluster. We deploy the stack as a cluster for load balancing purposes. Logstash ingests ,transforms and sends the data to the Kibana Graphical User Interface for visualization. Elasticsearch indexes, analyzes, and searches the ingested data into Kibana and our Operations Team and other system users can visualize and analyze these logs on the Kibana GUI frontend.  
poster icon Poster THPDP047 [0.503 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP047  
About • Received ※ 03 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)