
ELK STACK DEPLOYMENT WITH ANSIBLE
T. Gatsi, X. P. Baloyi, J. L. Lekganyane, R. L. Schwartz

South African Radio Astronomy Observatory, Cape Town, South Africa

Abstract
The 64-dish MeerKAT radio telescope, constructed in

South Africa, became the largest and most sensitive radio
telescope in the Southern Hemisphere and will eventually
be integrated with the Square Kilometre Array (SKA).

A Control and Monitoring (CAM) system for a Radio
Astronomy Project, such as MeerKAT, produces vast
amounts of sensor data and event logs. Viewing and ana-
lysing this data to trace system issues require engineers and
maintainers to spend significant time searching for the re-
lated events.

The ELK (Elasticsearch, Logstash, Kibana) software
stack, deployed using Ansible, was implemented for the
MeerKAT radio telescope in order to have the capability to
aggregate system process logs and save search time.

A cluster deployment was used to ensure load balancing,
high availability and fault tolerance within the MeetKAT
CAM environment. This was deployed using Linux Con-
tainers (LXC) running inside a Proxmox virtual environ-
ment, with Ansible as the software deployment tool. Each
container in the cluster performs cluster duties, such as de-
ciding where to place index shards, and when to move
them. Each container is also configured to be a data node,
which makes up the heart of the cluster.

Logstash is used to ingest, transform and send data to
Elasticsearch for indexing. The data is then made available
for visualisation to the MeerKAT Operations Team and
other interested users via the Kibana Graphical User Inter-
face (GUI).

INTRODUCTION
The MeerKAT radio telescope generates large amounts

of logs daily. The ability to effectively manage, analyse,
and extract insights from this data is paramount. One key
solution that has emerged to address this need is the ELK
cluster, comprising three core components – Elasticsearch
[1], Logstash [2], and Kibana [3]. The ELK stack [4] pro-
vides a robust framework for ingesting, processing, stor-
ing, and visualising data.

In the context of the MeerKAT CAM system environ-
ment, an ELK cluster is deployed on three LXC nodes
within a Proxmox virtual environment. This enables effi-
cient display and analysis of control and monitoring system
logs through Kibana, as shown in Fig. 1.

The process of deployment of this ELK cluster can be
complex, requiring numerous resources and time. To make
the deployment easier and faster, the automation platform
from Red Hat, Ansible [5], was used within the MeerKAT
CAM environment. This paper outlines the process of how
this was accomplished.

Figure 1: ELK stack deployment in CAM.

ELK SOFTWARE STACK
Elasticsearch

At the heart of the ELK cluster lies Elasticsearch. This
powerful and scalable search and analytics engine serves
as the backbone of the entire setup [6]. Its primary role is
to efficiently index and store data, making it searchable and
retrievable in real-time.

Complementing Elasticsearch is Logstash, a versatile
data processing pipeline. Logstash serves as the bridge be-
tween data sources and Elasticsearch, facilitating the inges-
tion of data, its transformation, and potential enrichment.

In the MeerKAT CAM environment, Elasticsearch's dis-
tributed nature allows it to be seamlessly spread across our
three Ubuntu LXC container nodes. As CAM system logs
are generated, they are fed into Elasticsearch via the con-
figured Logstash server, where they are indexed and organ-
ised, forming the foundation for comprehensive log analy-
sis.

Indexing Indexing entails importing data from exter-
nal sources into the elasticsearch cluster. In the CAM soft-
ware application, data is ingested as logs from the produc-
tion system. ElasticSearch functions as a textual indexer,
exclusively analysing plain text data. However, a plugin al-
lows data storage in base64 format.

During data indexing, fields are defined, where either a
built-in analyser is used, or a custom analyser is created.
Specific fields are also selected to be made available in
search results. Notably, indexing operations differs from
typical CRUD (Create, Read, Update and Delete) opera-
tions – instead of updating or deleting data directly, Elas-
ticsearch generates a new version of the index while mark-
ing the old version as deleted.

This point is crucial, since improper configurations can
lead to indefinite data expansion due to accumulating "de-
leted" versions. Properly configured purging involves seg-
menting shards and periodically merging segments to

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP047

Software

Data Management

THPDP047

1411

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

physically remove outdated documents. All operations, in-
cluding indexing, can be executed through Elasticsearch's
REST API, detailed later in this article.

Searching Searching stands as one of the most vital
actions in ElasticSearch. Similar to indexing, Elasticsearch
offers a REST API for search operations. The API presents
a broad spectrum of search possibilities, ranging from basic
term searches to intricate searches involving hierarchies,
synonyms, language detection, and more.

Searches within Elasticsearch are score-based, employ-
ing formulas to assess document relevance against the
query. This scoring mechanism can be customised to match
specific requirements. Typically, cluster searches occur in
two phases:

1. The primary node transmits the query to both nodes
and shards, subsequently retrieving document identi-
fiers and their corresponding scores. The master sub-
sequently selects meaningful documents based on
scores and a "size" parameter, limiting the maximum
results.

2. The master sends requests to nodes to retrieve the se-
lected documents from the previous phase. After re-
ceiving these documents, the master compiles the fi-
nal result for the client. Alternative search modes,
such as "query_and_fetch," conduct simultaneous
searches across all shards, returning not only docu-
ment identifiers and scores but also data itself. Here,
the maximum results are determined by the size pa-
rameter plus the shard count.

A notable ElasticSearch configuration feature is the abil-
ity to allocate specific nodes exclusively for query opera-
tions and others for data storage, known as data nodes. This
setup streamlines queries by eliminating the need to search
across the entire cluster, resulting in faster search perfor-
mance.

Data Management As part of the CAM system soft-
ware environment, Elasticsearch Curator was installed.
Curator is a tool that helps manage and maintain Elas-
ticsearch indices. It is used for tasks like index lifecycle
management, data retention, and optimising cluster perfor-
mance. Curator is particularly helpful when dealing with
large amounts of data and indices, as it automates the pro-
cess of handling these tasks.

As the Elasticsearch cluster accumulates data, the num-
ber of indices can grow substantially. Curator can be used
to manage the lifecycle of indices, such as closing or delet-
ing old indices to free up resources.

For the CAM cluster, curator is configured to delete logs
after 90 days so they are limited in a controlled manner.

Through data retention policies (e.g. keeping data for a
certain period and then removing it), Curator can help au-
tomate the process. It can identify indices that have reached
a certain age and perform actions to delete or archive them.

Elasticsearch indices can become inefficient over time
due to factors like segment fragmentation. Curators can op-
timise indices by triggering force merges, which improves
search performance and reduce resource consumption.

Curator can also facilitate the process of creating and
managing data backup for disaster recovery purposes. This

involves taking periodic snapshots of indices and storing
them in a repository.

Elasticsearch aliases provide a way to point to one or
more indices as a single entity. Curators can help manage
aliases by adding or removing them from indices, allowing
control of which indices are actively queried.

Logstash
Included in the Elastic stack, Logstash is a data pro-

cessing and enrichment tool that is often used in conjunc-
tion with Elasticsearch to manage and process large vol-
umes of data, especially logs, and then index it into Elas-
ticsearch for efficient searching and analysis.

Logstash can ingest data from various sources, including
log files, message queues, databases, APIs, and more. It
provides input plugins that allow users to configure
Logstash to fetch data from these sources.

In the CAM software, data is ingested as log files into
Elasticsearch for fault finding and troubleshooting pur-
poses. After data is ingested, Logstash can perform various
processing tasks on it. This includes parsing raw log data
into structured fields, transforming data, enriching it with
additional information, and performing filtering or condi-
tional actions.

Logstash can enhance the data with context by adding
additional information. For example, it can perform IP ad-
dress lookups to determine geolocation or correlate data
with external data sources. Logstash can transform data
formats, such as converting logs into a standardised format
or enriching them with calculated fields.

Logstash allows users to filter and exclude unwanted
data, reducing the amount of irrelevant information that's
indexed into Elasticsearch. Once data is processed,
Logstash can send the transformed and enriched data to
Elasticsearch for indexing. It uses the Elasticsearch output
plugin to accomplish this.

ELK STACK DEPLOYMENT IN CAM
ELK Stack

All LXC nodes host a Logstash instance. As CAM sys-
tem logs flow into Logstash, it employs configurable filters
and parsers to extract valuable information and structure
the data in a standardised format. This enriched data is then
forwarded to Elasticsearch for storage and further analysis.

The visualisation and user interaction layer of the ELK
stack is embodied by Kibana. This dynamic tool empowers
users to create interactive dashboards, visualisations, and
reports that unveil insights from the stored data. Within the
CAM environment, Kibana instances are set up in all of the
three LXC container nodes. These instances establish a
connection with the Elasticsearch cluster via the proxmox
servers, as shown in Fig. 1, retrieving the structured
CAM system logs. Through Kibana's intuitive interface,
custom dashboards can be craft, that visually represent the
trends, anomalies, and performance metrics present within
the CAM system logs.

This fusion of Elasticsearch, Logstash, and Kibana
forms a symbiotic relationship, allowing the CAM system

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP047

THPDP047

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1412

Software

Data Management

users to seamlessly navigate, comprehend and search
through the logs to find instances where and when issues
occurred on the system using the log data.

As the CAM system logs flow through this intricate ar-
chitecture, a series of orchestrated events occur. The logs
are captured and transmitted to Logstash, where they un-
dergo transformation and enrichment, and are then stored
within the distributed Elasticsearch cluster.

Kibana instances tap into this repository, rendering the
data into compelling visualisations that provide insights
into the intricacies of the CAM system's behaviour.
Whether it's tracking performance metrics, detecting
anomalies, or uncovering patterns, Kibana's dashboarding
capabilities empower users to derive actionable insights.

Figure 2 shows the pipeline of CAM logs.

Figure 2: How Logs move from CAM to the User.

Proxmox
The orchestration of this ELK cluster within the CAM

proxmox virtual environment introduces another layer of
complexity and flexibility. Proxmox's virtualization capa-
bilities enable the abstraction of hardware resources,
providing a scalable and manageable infrastructure. Dis-
tributing the ELK cluster across our three proxmox hosts
enhances resilience and ensures that the cluster remains op-
erational even in the face of node failures. Moreover, the
container-based virtualization offered by LXC further op-
timises resource utilisation and isolation, ensuring that
each component of the ELK stack operates smoothly with-
out interference.

Cluster Capabilities
Within the CAM system, the cluster benefits extend be-

yond scalability and availability. Elasticsearch facilitates
shard replication, safeguarding against data loss by creat-
ing duplicate copies across the 3 nodes in the cluster. If a
replica is lost, the cluster automatically clones and redis-
tributes a new one.

Furthermore, Elasticsearch clusters can autonomously
discover other nodes. By default, upon node startup, Elas-
ticsearch uses Zen discovery mode, utilising unicast and
multicast to locate instances across all operating system
ports. This mode is specified in the Elasticsearch configu-
ration. If a compatible instance is found, and the cluster
name is matched, communication is established, and the
new node joins the running cluster. ElasticSearch offers
various modes for this feature, including cross-server node
discovery.

USING ANSIBLE TO DEPLOY
ELASTICSEARCH

Deploying the ELK stack using Ansible can help sim-
plify deployment processes, reduce errors and ensure con-
sistency across an infrastructure. Ansible is a powerful au-
tomation tool that uses YAML files to define configura-
tions and tasks.

Ansible is used for the ELK stack deployment in CAM
because of the below reasons. Automation with Ansible
streamlines the entire ELK deployment process, effectively
reducing the need for manual labour and minimising the
potential for errors. Furthermore, it ensures a consistent
configuration across all ELK components, promoting reli-
able performance and eliminating discrepancies.

In terms of scalability, Ansible simplifies the process of
expanding the ELK stack by allowing the definition of new
instances in Ansible playbooks. The reusability of ansible
playbooks is a valuable advantage, as they can be em-
ployed for future deployments, ultimately saving time and
effort in the long run. Moreover, Ansible's idempotence
feature guarantees that running playbooks multiple times
will consistently yield the same desired outcome, prevent-
ing unintended changes to the system. The modularity of
Ansible breaks down the deployment into manageable
roles and tasks, making maintenance tasks significantly
easier to manage.

When it comes to security, Ansible facilitates the con-
sistent implementation of security measures across the en-
tire ELK stack. In addition, Ansible playbooks serve as
documentation, making the setup process clear and under-
standable for all team members involved.

Version control is another benefit, as infrastructure code
can be effectively version controlled, enhancing traceabil-
ity and accountability throughout the deployment process.
Lastly, Ansible's flexibility is evident in its ability to work
across various platforms and environments, making it a
versatile tool for deployments in diverse scenarios.

ELK STACK DEPLOYMENT WITH AN-
SIBLE IN CAM

 Setup of an ELK stack using Ansible to manage the de-
ployment process across 3 LXC containers can greatly
streamline the task and ensure consistency across the envi-
ronment. This step-by-step guide outlines how to achieve
this deployment while allocating the same computing re-
sources to each container and utilising the Ansible tool.

Inventory Setup
Begin by preparing an Ansible inventory file. This file

lists the hostnames of the 3 LXC containers that will be
deployed for the ELK stack. The inventory file might look
like plaintext.

[elk_nodes]
container1 ansible_host=IP_ADDRESS_1
container2 ansible_host=IP_ADDRESS_2
container3 ansible_host=IP_ADDRESS_3

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP047

Software

Data Management

THPDP047

1413

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

ELK Ansible Playbook

Figure 3: ELK Ansible Playboo

Following the inventory setup, generate an Ansible Play-
book, like the one shown in Fig. 3.

 Organisation of the playbook is done by utilising Ansi-
ble roles, for example, the ELK role is created and used.

Configuration management is done using Github, which
improves modularity and reusability. Roles can also in-
clude templates for Elasticsearch and Kibana configura-
tions. For instance, the template for elasticsearch.yml.j2
might contain configuration settings like the cluster name,
memory settings, and node roles.

The same computing resources are allocated to each con-
tainer, and therefore it is easy to use Ansible to configure
resource settings. Ansible provides modules for managing
resources, like the lxc_container module for LXC.

Execution of the playbook is done using the command
below, where the inventory.ini is the name of the inventory
file and elk_deploy.yml with the name of the playbook file:

$ ansible-playbook -i inventory.ini elk_deploy.yml

CONCLUSION
By following the above steps, the ELK stack has been

efficiently deployed using Ansible across 3 LXC contain-
ers in the CAM infrastructure system, ensuring consistent
configuration and resource allocation. This setup will ena-
ble effective management and analysis of CAM system
logs using the ELK stack, promoting operational insights
and informed decision-making.

In conclusion, the ELK cluster represents a sophisticated
interaction between Elasticsearch, Logstash, and Kibana
within the CAM system environment. The dynamic cluster
of LXC container nodes within the Proxmox virtual envi-
ronment forms the backbone for analysing and visualising
CAM system logs. This amalgamation of technologies not
only streamlines the handling of vast data streams but also
empowers user to uncover invaluable insights hidden
within the logs.

By utilising Ansible for deploying ELK containers
across multiple Proxmox virtual environments, the deploy-
ment process is streamlined, improving consistency, and
increasing the efficiency of managing the infrastructure.

Consideration will soon be given to using Docker in the
deployment of the ELK stack, as this has become a stand-
ard approach in industry that provides flexibility and sim-
plicity in management.

Using Ansible alongside Docker can further enhance the
deployment process by automating the setup and configu-
ration of a Dockerised ELK stack.

REFERENCES
[1] Elasticsearch,

https://github.com/elastic/elasticsearch

[2] Kibana, https://github.com/elastic/kibana

[3] Logstash, https://github.com/elastic/logstash

[4] The Complete Guide to the ELK Stack,
https://logz.io/learn/completeguideelk
stack/

[5] Ansible, https://www.ansible.com

[6] Elastic, https://www.elastic.co

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP047

THPDP047

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1414

Software

Data Management

