Author: Da Silva, V.
Paper Title Page
TUPDP083 DAQ System Based on Tango, Sardana and PandABox for Millisecond Time Resolved Experiment at the CoSAXS Beamline of MAX IV Laboratory 713
 
  • V. Da Silva, B.N. Ahn, J.P. Alcocer, R. Appio, Á. Freitas, M. Lindberg, T.S. Plivelic, A.E. Terry
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  CoSAXS is the Coherent and Small Angle X-ray Scattering (SAXS) beamline placed at the diffraction-limited 3 GeV storage ring at MAX IV Laboratory. The beamline can deliver a very high photon flux ~1013 ph/s and it is equipped with state-of-the-art pixel detectors, suitable for experiments with a high time-resolution to be performed. In this work we present the upgraded beamline data acquisition strategy for a millisecond time-resolved SAXS/WAXS experiment, using laser light to induce temperature jumps or UV-excitation with the consequent structural changes on the system. In general terms, the beamline control system is based on TANGO and built on top of it, Sardana provides an advanced scan framework. In order to synchronize the laser light pulse on the sample, the X-ray fast shutter opening time and the X-ray detectors readout, hardware triggers are used. The implementation is done using PandABox, which generates the pulse train for the laser and for all active experimental channels, such as counters and detectors, in synchronization with the fast shutter opening time. PandABox integration is done with a Sardana Trigger Gate Controller, used to configure the pulses parameters as well to orchestrate the hardware triggers during a scan. This paper describes the experiment orchestration, laser light synchronization with multiple X-ray detector.  
poster icon Poster TUPDP083 [1.645 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP083  
About • Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO08 Efficient and Automated Metadata Recording and Viewing for Scientific Experiments at MAX IV 1041
 
  • D. van Dijken, V. Da Silva, M. Eguiraun, V. Hardion, J.M. Klingberg, M. Leorato, M. Lindberg
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  With the advancements in beamline instrumentation, synchrotron research facilities have seen a significant improvement. The detectors used today can generate thousands of frames within seconds. Consequently, an organized and adaptable framework is essential to facilitate the efficient access and assessment of the enormous volumes of data produced. Our communication presents a metadata management solution recently implemented at MAX IV, which automatically retrieves and records metadata from Tango devices relevant to the current experiment. The solution includes user-selected scientific metadata and predefined defaults related to the beamline setup, which are integrated into the Sardana control system and automatically recorded during each scan via the SciFish[1] library. The metadata recorded is stored in the SciCat[2] database, which can be accessed through a web-based interface called Scanlog[3]. The interface, built on ReactJS, allows users to easily sort, filter, and extract important information from the recorded metadata. The tool also provides real-time access to metadata, enabling users to monitor experiments and export data for post-processing. These new software tools ensure that recorded data is findable, accessible, interoperable and reusable (FAIR[4]) for many years to come. Collaborations are on-going to develop these tools at other particle accelerator research facilities.
[1] https://gitlab.com/MaxIV/lib-maxiv-scifish
[2] https://scicatproject.github.io/
[3] https://gitlab.com/MaxIV/svc-maxiv-scanlog
[4] https://www.nature.com/articles/sdata201618
 
slides icon Slides WE3BCO08 [1.914 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO08  
About • Received ※ 06 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO09
DAQ System Based on Sardana and PandABox for Combined SAXS, Fluorescence and UV-Vis Spectroscopy Techniques at MAX IV CoSAXS Beamline  
 
  • V. Da Silva, R. Appio, M. Eguiraun, F. Herranz-Trillo, A.F. Joubert, M. Leorato, Y.L. Li, M. Lindberg, C. Takahashi, A.E. Terry
    MAX IV Laboratory, Lund University, Lund, Sweden
  • C. Dicko
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • W.T. Kitka
    S2Innovation, Kraków, Poland
 
  CoSAXS is the Coherent and Small Angle X-ray Scattering (SAXS) beamline placed at the diffraction-limited 3 GeV storage ring at MAX IV Laboratory. This paper presents the data acquisition (DAQ) strategy for combined SAXS, Ultraviolet-visible (UV-Vis) and Fluorescence Spectroscopy techniques. In general terms, the beamline control system is based on TANGO and on top of it, Sardana provides an advanced scan framework. Sardana performs the experiment orchestration, configuring and preparing the X-ray detector and the Spectrometers for UV-Vis and Fluorescence. Hardware triggers are used to synchronize the DAQ for the different techniques running simultaneously. The implementation is done using PandABox, which generates pulse trains for the X-ray detector and spectrometers. PandABox integration into the system is done with a Sardana Trigger Gate Controller, used to configure the pulse trains parameters as well to orchestrate the hardware triggers during a scan. This paper describes the individual techniques’ integration into the control system, the experiment orchestration and synchronization and the new experiment possibilities this multi-technique DAQ system brings to MAX IV beamlines.  
slides icon Slides THMBCMO09 [0.570 MB]  
poster icon Poster THMBCMO09 [1.600 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP040 Control System of the ForMAX Beamline at the MAX IV Synchrotron 1402
 
  • W.T. Kitka
    S2Innovation, Kraków, Poland
  • V. Da Silva, V.H. Haghighat, Y.L. Li, J. Lidón-Simon, M. Lindberg, S. Malki, K. Nygård, E. Rosendahl
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  This paper describes the design and implementation of the control system for the ForMAX beamline at the MAX IV synchrotron. MAX IV is a Swedish national laboratory that houses one of the brightest synchrotron light sources in the world. ForMAX is one of the beamlines at MAX IV and is funded by the Knut and Alice Wallenberg Foundation and Swedish industry via Treesearch. To meet the specific demands of ForMAX, a new control system was developed using the TANGO Controls and Sardana frameworks. Using these frameworks enables seamless integration of hardware and software, ensuring efficient and reliable beamline operation. The control system was designed to support a variety of experiments, including multiscale structural characterization from nanometer to millimeter length scales by combining full-field tomographic imaging, small- and wide-angle X-ray scattering (SWAXS), and scanning SWAXS imaging in a single instrument. The system allows for precise control of the beam position, energy, intensity, and sample position. Furthermore, the system provides real-time feedback on the status of the experiments, allowing for adjustments to be made quickly and efficiently. In conclusion, the design and implementation of the control system for the ForMAX beamline at the MAX IV synchrotron has resulted in a highly flexible and efficient experimental station. TANGO Controls and Sardana have allowed for seamless integration of hardware and software, enabling precise and reliable control of the beamline for a wide range of experiments.  
poster icon Poster THPDP040 [0.668 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP040  
About • Received ※ 04 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)