Author: Boutboul, T.
Paper Title Page
THPDP002 The Micro-Services of Cern’s Critical Current Test Benches 1295
 
  • C. Charrondière, A. Ballarino, C. Barth, J.F. Fleiter, P. Koziol, H. Reymond
    CERN, Meyrin, Switzerland
  • O.Ø. Andreassen, T. Boutboul, S.C. Hopkins
    European Organization for Nuclear Research (CERN), Geneva, Switzerland
 
  In order to characterize the critical-current density of low temperature superconductors such as niobium¿titanium (NbTi) and niobium¿tin (Nb₃Sn) or high temperature superconductors such as magnesium-diboride MgB₂ or Rare-earth Barium Copper Oxide REBCO tapes, a wide range of custom instruments and interfaces are used. The critical current of a superconductor depends on temperature, magnetic field, current and strain, requiring high precision measurements in the nano Volt range, well-synchronized instrumentation, and the possibility to quickly adapt and replace instrumentation if needed. The micro-service based application presented in this paper allows operators to measure a variety of analog signals, such as the temperature of the cryostats and sample under test, magnetic field, current passing through the sample, voltage across the sample, pressure, helium level etc. During the run, the software protects the sample from quenching, controlling the current passed through it using high-speed field programmable gate array (FPGA) systems on Linux Real-Time (RT) based PCI eXtensions controllers (PXIe). The application records, analyzes and reports to the external Oracle database all parameters related to the test. In this paper, we describe the development of the micro-service based control system, how the interlocks and protection functionalities work, and how we had to develop a multi-windowed scalable acquisition application that could be adapted to the many changes occurring in the test facility.  
poster icon Poster THPDP002 [6.988 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP002  
About • Received ※ 06 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 26 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)