
CONTINUOUS INTEGRATION AND DEBIAN PACKAGING FOR
RAPIDLY EVOLVING SOFTWARE∗

A. Barker† , J. Georg, M. Hierholzer, M. Killenberg, T. Kozak, D. Rothe, N. Shehzad, C. Willner
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, Germany

Abstract
We describe our Jenkins-based continuous integration

system and Debian packaging methods, and their applica-
tion to the rapid development of the ChimeraTK framework.
ChimeraTK is a C++ framework for control system applica-
tions and hardware access with a high level of abstraction
and consists of more than 30 constantly changing interdepen-
dent libraries. Each component has its own release cycle for
rapid development, yet API and ABI changes must be propa-
gated to prevent problems in dependent libraries and over 60
applications. We present how we configured a Jenkins-based
continuous integration system to detect problems quickly
and systematically for the rapid development of ChimeraTK.
The Debian packaging system is designed to ensure the com-
patibility of binary interfaces (ABI) and of development
files (API). We present our approach using build scripts that
allow the deployment of rapidly changing libraries and their
dependent applications as Debian packages.These even per-
mit applications to load runtime plugins that draw from the
same core library, yet are compiled independently.

INTRODUCTION
Minor release upgrades to software libraries typically

exhibit binary compatibility. This ensures that projects re-
liant on these libraries can depend on a stable application
binary interface (ABI), in addition to having compatible
source code, known as the application programming inter-
face (API).

Maintaining ABI compatibility requires significant effort
and hampers the flexibility needed for a rapidly evolving
software framework. On the ChimeraTK project [1], the
needs of control system applications drive new feature de-
velopment, and the release timelines should be short. Hence
we have decided against preserving binary compatibility for
minor software releases. However, this decision comes with
the important drawback of always having to re-compile all
dependent projects. This warrants special attention when
creating software packages and setting up a continuous inte-
gration (CI) system.

DEBIAN PACKAGING
Library packages are binary compatible for the lifetime

of a distribution. A binary incompatible package requires
a different package name. This is solved by incorporating
major and minor version numbers into the package name,
so that different versions are formally completely different
∗ We acknowledge support from DESY (Hamburg, Germany), a member

of the Helmholtz Association HGF.
† anthony.barker@desy.de

packages. Binary compatible patches remain viable since
the patch level is not part of the package name.

A library depending on changing binary sources is not
itself binary stable, even without source code changes. To
enable new releases based on changes to the dependencies,
we have extended the minor version to include a build
version which changes as dependencies change. This build
version also contains the distribution code name. Since this
is part of the minor version, it also becomes part of the
so-version, such that the C++ linking layer is taking it into
account. For example: for major version 3, minor version
11, with Ubuntu20.04 code-named “focal”, and build
number 1, the Debian package is named libchimeratk-
deviceaccess03-11-focal1 and the .so-file is
libChimeraTK-DeviceAccess.so.03.11focal1.

Our packaging script [2] has a dependency database that
stores all dependency versions for each build. Then the build
version is increased if the dependency versions change. In
addition, the script has an inverse dependency lookup mecha-
nism to identify all libraries that depend on the library being
rebuilt. Then their build versions are also increased and
they are recompiled, so resulting in a new, binary consistent
ensemble of libraries.

Debian packages for applications are usually not rebuilt,
so untouched applications remain intact and unaffected by
changes in the framework. Packages for applications also
have the major, minor, and build version in their package
names. Thus, there is a dedicated package for each release.
In contrast to libraries, packages from the same application
exclude each other’s installation. This is done by introduc-
ing a virtual package via the the package metadata, noting
“provides” and “conflicts” with the package base name with-
out version number. However, the use of package names
with version number allows for easy roll-back to a previous
version if needed.

Binary Compatible Plugins
ChimeraTK DeviceAccess is a C++ library that provides

access to hardware or device servers. Different communica-
tion protocols are accommodated by so-called device back-
ends. These include PCI express and Linux UIO [3]. Other
backends accommodate various control system middleware
like DOOCS [4], EPICS [5] and OPC UA [6]. Generic appli-
cations, like the graphical user interface QtHardMon or the
DeviceAccess Python bindings, are not linked against all the
backends. This prevents the user form having to install all
of those control system software stacks, even if they will not
be used. DeviceAccess has a runtime loading mechanism
to make these backends work with the generic applications,
and this runtime plugin loading requires binary compati-

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO07

Software

Software Best Practices

MO2BCO07

61

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

qthardmon

libchimeratk-deviceaccess03-11-focal1

libchimeratk-deviceaccess

(>= 03.11focal1 && << 03.11focal2)

libchimeratk-deviceaccess-doocsbackend

(>= 03.11focal1 && << 03.11focal2)

libchimeratk-deviceaccess-doocsbackend01-07-focal2

Figure 1: Diagram of Debian package dependencies of a generic DeviceAccess applications, qthardmon, and back-
end libchimeratk-deviceaccess-doocsbackend. The dependencies to the libchimeratk-deviceaccess meta-
package (red) have an explicit version number. These dependencies are a ranges to match the major and the extended minor
version since the actual version number also contain the patch level and the Debian build version. The blue dependencies do
not have an explicit version in the metadata because they refer to a package with the version number in the package name.

bility. Consequently, the application and the DeviceAccess
backend have to be compiled and linked against the same
version of DeviceAccess. The installation of a compatible
version of a backend must be ensured, especially when the
application is being updated.

A simple approach would use the development package,
which omits the version number in its package name (e.g.,
libchimeratk-deviceaccess-dev) and always contains
the latest version. If both the application and the backend
package were to depend on the DeviceAccess development
package, it would ensure consistent updates. However, the
development packages also depend on other development
packages. Consequently, this would require the installation
of the entire development stack for both the application and
the backend. The development stack does not only include all
the header files but also the compilers, which is not wanted
on productive systems. To circumvent this issue, supplemen-
tary meta-packages for DeviceAccess and the backends have
been introduced.

DeviceAccess features a meta-package1, called
libchimeratk-deviceaccess, which depends on the
correct version of the DeviceAccess library. It serves as a
dependency anchor for generic applications and loadable
backends. The generic application depends on the exact
version of this meta-package. These relationships are
diagrammed in Fig. 1.

In addition to the package with the version number in
the package name, each backend also has a package with-
out the version number. It contains the shared object sym-
bolic link without version number (e.g. libchimeratk-
deviceaccess-doocsbackend.so) which is usually part
of the development package. Like the generic applications,

1 an empty package which provides additional dependencies

this backend package also depends on the exact version of
libchimeratk-deviceaccess. The development pack-
age depends on the meta-package to provide the symbolic
link, and brings the headers and build chain files so a C++
application can link against the versioned .so-file at compile
time.

In contrast to regular applications, which are uniquely
associated with their backends, generic applications must
be inter-operable with every backend and so must recompile
every time a new DeviceAccess package is built, so as to
have an installable version that matches libchimeratk-
deviceaccess. This is accomplished through their exact
version dependency. As regular C++ libraries, the backends
must also be recompiled, but this is already accomplished
by the inverse dependency mechanism.

Now if a newer version of the backend is being installed,
this will update libchimeratk-deviceaccess to the lat-
est version, which in turn will update all the applications
that depend on it (and all other backends), because of the
exact version dependency. If a new version of a generic
application is installed, this will update all backends and
the other generic applications. Thus, a binary compatible
backend is always available for the applications to load, even
though the DeviceAccess library does not provide binary
compatibility between different releases.

A regular application usually knows which backends it
needs. It does not use the plugin mechanism and links
against the versioned .so-file at compile time. So, differ-
ent applications can use different versions of the backend
without interfering with each other, and the library is au-
tomatically installed via the Debian packaging mechanism.
As described above, they do not have to be re-packaged with
each DeviceAccess release.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO07

MO2BCO07

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

62

Software

Software Best Practices

CONTINUOUS INTEGRATION
WITH JENKINS

Continuous integration is an invaluable tool to improve
the code quality and detect code issues early. In a modular
framework with multiple interdependent libraries the two
most important pieces of information are: “Is the project
OK?” and “Do changes in a library break any downstream
projects?”.

For ChimeraTK and its dependent applications, we have
set up a Jenkins server [7] which performs the following
tests for each project:

• Check that the code compiles

• Check for compiler warnings

• Run unit tests, including code coverage report

• Check for memory leaks using an address sanitiser
build

• Check for timing races using a thread sanitiser build

• Build for multiple target platforms

• Make debug and release builds

• Use multiple compilers

We use a dedicated high performance build server with
256 cores and 1 TB of RAM. The ChimeraTK libraries
make extensive use of C++ templates, which causes long
compile times of several minutes for a single project, even
when doing parallel builds on the high performance build
server. Build times are particularly long when network-based
communication protocols with long timeouts are involved,
or when algorithmic behaviour is tested against complex
simulations. Running the extensive unit and integration test
suites can take longer than half an hour, and this is for one
project among many.

ChimeraTK is a modular framework which comes with
more than 20 interdependent libraries and tools, and our
software stack contains more than 30 client applications.
In combination with the high demands of the individual
projects, this presents a big challenge to the CI system.

To check that downstream projects are not broken by
changes in an upstream project, Jenkins’ built-in dependency
resolver triggers all of the dependent projects. Re-compiling
all downstream projects is especially essential in our situa-
tion where binary compatibility is not ensured. With many
projects each taking several minutes to compile and longer
still to run the tests, the total execution time for the CI chain
quickly adds up and can exceed our computing resources.
The problem is exacerbated by the fact that Jenkins does
not resolve diamond dependencies (see Fig. 2). Even when
using the option to suppress rebuilds if an upstream project
is building, it triggers downstream libraries and nearly all
application projects multiple times. This consumes signif-
icant computing resources. It can also cause many “false

positive” failed jobs. This can happen in the case of a bi-
nary incompatible change, where the downstream project
is already triggered before all its dependencies have been
recompiled against the new code base, causing the job to
fail.

The typical time for the whole CI chain to execute was
more than 5.5 hours if the most upstream projects were
triggered. This is far too resource intensive to be done for
each commit. To be useful for the developer, the CI signal
that something has been broken should be made available
quickly, in a few minutes at most. Otherwise it cannot be
integrated into the development workflow and provides no
significant benefit over a nightly build.

In addition, the heavy load sometimes overloads the Jenk-
ins server, making it unresponsive and resulting in even more
failed jobs due to Jenkins running out of memory (although
this occurs while running on a separate machine, not on the
build host).

Fast Track and Nightly Builds
To get faster response times, we implemented a so called

“fast track”, which is a stripped down version of the CI
chain with only the essential tests. Each project gets split up
into two Jenkins jobs: the “fasttrack” build job, which just
compiles the library or application without its tests, and the
“fasttrack-testing” job, which compiles and executes the tests.
The idea here is to allow that downstream projects can start to
build once the parent build is completed, without waiting for
the extensive tests to compile, which can take much longer
than compiling the libraries themselves. This speeds up the
entire build chain. In addition, the fast track is only executed
for one target platform and one build type: a debug build on
Ubuntu20.04. We also use Groovy scripts to steer Jenkins
into avoiding diamond dependencies by implementing a
dependency database. These measures result in reducing the
build time for the ChimeraTK libraries to around 20 minutes,
hasten applications compilation, and deliver preliminary
results typically within half an hour.

However, the turn-around time could not be reduced as
much as desired. Even a half hour of waiting is too long to
be included in our work flow. In addition, the wait time is
inconsistent. For some downstream projects with only one
or two dependencies, the build time is usually well under
5 minutes, but can take up to 3 hours if other chains are
triggered in parallel.

Triggering all dependencies from within a job has other
drawbacks: mostly in the form of excessive false-positive
build job failures. Build jobs fail if Jenkins cannot start or fin-
ish them. Also, either the homemade dependency database
or a job may crash due to Jenkins running out of memory.
This problem compounds because the calling job is counted
as failed as well. Then jobs often fail for unknown reasons
unrelated to the quality of the software under test, and there
seem to be a wide variety of root causes. For instance, if the
default branch is named “main” rather than “master”. These
problems compound since if a triggered build crashes, the
calling job is then also labelled as failing. This cascades

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO07

Software

Software Best Practices

MO2BCO07

63

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

GenericDeviceServer

ApplicationCore ControlSystemAdapter-DoocsAdapter DeviceAccess-DoocsBackend

ControlSystemAdapter DoocsServerTestHelper

DeviceAccess

Figure 2: Diamond dependencies of the ChimeraTK GenericDeviceServer. The server depends on ApplicationCore and the
ControlSystemAdapter-DoocsAdapter, which both depend on the ControlSystemAdapter. A second diamond is formed by the
ControlSystemAdapter-DoocsAdapter and DeviceAccess-DoocsBackend, which both depend on the DoocsServerTestHelper.
And a third, larger diamond is formed with DeviceAccess at the top, because both the ControlSystemAdapter and the
DeviceAccess-DoocsBackend depend on it.

through the dependency tree, so a single failing application
project, that may actually work perfectly, and which depends
on many ChimeraTK libraries can make all its library jobs
throughout the dependency tree get marked as “failed”. This
leads to a dramatic over-reporting of job failures with the
Jenkins dashboard filled with reports of failed jobs, even
though more than 90% of them have no legitimate issues.
Consequently, usefulness of Jenkins is degraded for alerting
the development team to real problems.

These problems all have to be ironed out to make the
CI system a reliable and effective tool. Debugging the CI
system is extremely tedious because the Groovy scripts can
only be tested on the on-line Jenkins system. A modified
Groovy script has to be checked into the git repository with
the Jenkins scripts, and then the build chain in Jenkins has
to be triggered. It is very frustrating to wait half an hour or
more to run the modification, only to crash with a syntax
error or get a report that it still cannot find the dependent
project that you want to trigger. Hence, development on
the CI system is slow and the overall stability has a lot of
potential to be improved. Also introducing the dependency
database to avoid the diamond dependency re-triggering has
not solved the issues of Jenkins becoming unresponsive and
needing to be restarted, or of Jenkins sometimes running out
of memory, which seems to be a Java-related problem.

Building Branches Including Downstream
Projects

All the tests described so far are all executed on the master
branches of all projects. During development in feature or
bug-fix branches, it is desirable to test whether the down-
stream projects are broken by the changes before merging
them into the master. Often, changes in a core library are
initiated by new features in an applications or another library.
A branch in a downstream project might only compile on
the corresponding branch of the upstream project. Ideally,
Jenkins would check if the downstream project has a branch
with the same name when triggering dependencies. Trigger-
ing branches is implemented, but not yet fully working as
desired. And even a perfectly working branch build system
would have the issue that it takes too long to process the
whole chain, and that it has the potential to overload the
Jenkins server. Branches under development are pushed fre-
quently, and if each build triggers the CI chain, this quickly
piles up and it takes hours for Jenkins to work this off, and
finally give the answer whether all downstream projects are
still working.

CONCLUSION
Not having binary compatibility for minor software re-

leases enables the flexibility required to quickly and effi-
ciently implement features needed by the applications, as
well as a short software development cycle. It comes at the

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO07

MO2BCO07

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

64

Software

Software Best Practices

price of always having to re-compile all dependencies every
time a library changes.

For Debian packages, this can be solved by a naming
convention that incorporates the version and build numbers
in the package and library names, and packaging scripts
which have a dependency database and are automatically
incrementing the build number as needed.

Continuous integration with Jenkins is challenged by the
large code base and diamond dependencies, such that the
build-in dependency resolution cannot be used. Implement-
ing a dependency database using custom Groovy scripts is
computationally heavy and makes Jenkins unreliable. The
attempt to introduce a stripped-down “fast track” process
did not reach the desired speedup; it still takes as much as
three hours to compile all the projects and to run their tests,
yielding little benefit over a nightly build. Technically fail-
ing Jenkins jobs cause many false positive failures, which in
turn cause most projects to register a “failed” status, even if
more than 90% of them have no issue.

REFERENCES
[1] ChimeraTK: Control system and Hardware Interface with

Mapped and Extensible Register-based device Abstraction Tool
Kit, https://github.com/ChimeraTK/

[2] ChimeraTK Debian packaging scripts, https://github.
com/ChimeraTK/DebianPackagingScripts

[3] The Linux Userspace I/O HOWTO, https://www.kernel.
org/doc/html/v6.5/driver-api/uio-howto.html

[4] The Distributed Object Oriented Control System (DOOCS),
http://doocs.desy.de/

[5] Experimental Physics and Industrial Control System (EPICS),
http://www.aps.anl.gov/epics/index.php

[6] OPC Unified Architecture Specifications - Part 1: Overview
and Concepts, https://reference.opcfoundation.
org/v104/Core/docs/Part1/

[7] Jenkins automation server, https://www.jenkins.io/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO07

Software

Software Best Practices

MO2BCO07

65

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

