MO2A —  Experiment Control   (09-Oct-23   11:00—12:45)
Chair: A. Gotz, ESRF, Grenoble, France
Paper Title Page
MO2AO01 Facing the Challenges of Experiment Control and Data Management at ESRF-EBS 66
 
  • J.M. Meyer, W. De Nolf, S. Debionne, S. Fisher, A. Götz, M. Guijarro, P. Guillou, A. Homs Puron, V. Valls
    ESRF, Grenoble, France
 
  In 2020 the new ESRF-EBS (Extremely Brilliant Source) took-up operation. With the much higher photon flux, experiments are faster and produce more data. To meet the challenges, a complete revision of data acquisition, management and analysis tools was undertaken. The result is a suite of advanced software tools, deployed today on more than 30 beamlines. The main packages are BLISS for experiment control and data acquisition, LIMA2 for high-speed detector control, EWOKS for data reduction and analysis workflows, and Daiquiri the web GUI framework. BLISS is programmed in Python, to allow easy sequence programming for scientists and easy integration of scientific software. BLISS offers: Configuration of hardware and experimental set-ups, a generic scanning engine for step-based and continuous data acquisition, live data display, frameworks to handle 1D and 2D detectors, spectrometers, monochromators, diffractometers (HKL) and regulation loops. For detectors producing very high data rates, data reduction at the source is important. LIMA2 allows parallel data processing to add the necessary computing power (CPU and GPU) for online data reduction in a flexible way. The EWOKS workflow system can use online or offline data to automate data reduction or analysis. Workflows can run locally or on a compute cluster, using CPUs or GPUs. Results are saved or fed back to the control system for display or to adapt the next data acquisition.  
slides icon Slides MO2AO01 [2.766 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO01  
About • Received ※ 03 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO02 A Beamline and Experiment Control System for the SLS 2.0 71
 
  • K. Wakonig, C. Appel, A. Ashton, S. Augustin, M. Holler, I. Usov, J. Wyzula, X. Yao
    PSI, Villigen PSI, Switzerland
 
  The beamlines of the Swiss Light Source (SLS) predominantly rely on EPICS standards as their control interface but in contrast to many other facilities, there is up to now no standardized user interfacing component to orchestrate, monitor and provide feedback on the data acquisition. As a result, the beamlines have either adapted community solutions or developed their own high-level orchestration system. For the upgrade project SLS 2.0, a sub-project was initiated to facilitate a unified beamline and experiment control system. During a pilot phase and a first development cycle, libraries of the Bluesky project were used, combined with additional in-house developed services, and embedded in a service-based approach with a message broker and in-memory database. Leveraging the community solutions paired with industry standards, enabled the development of a highly modular system which provides the flexibility needed for a constantly changing scientific environment. One year after the development started, the system was already tested during many weeks of user operation and recently received the official approval by the involved divisions to be rolled out as part of the SLS 2.0 upgrade.  
slides icon Slides MO2AO02 [3.119 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO02  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO03 The Solid Sample Scanning Workflow at the European XFEL 78
 
  • A. García-Tabarés Valdivieso, C. Deiter, L. Gelisio, S. Göde, S. Hauf, A.K. Kardoost, I. Karpics, J. Schulz, F. Sohn
    EuXFEL, Schelefeld, Germany
 
  The fast solid sample scanner (FSSS) used at the HED instrument of the European XFEL (EuXFEL) enables data collection from multiple samples mounted into standardized frames which can be exchanged via a transfer system without breaking the interaction chamber vacuum. In order to maximize the effective target shot repetition rate, it is a key requirement to use sample holders containing pre-aligned targets measured on an accurate level of a few micrometers. This contribution describes the automated sample delivery workflow for performing solid sample scanning using the FSSS. This workflow covers the entire process, from automatically identifying target positions within the sample, using machine learning algorithms, to set the parameters needed to perform the scans. The integration of this solution into the EuXFEL control system, Karabo, not only allows to control and perform the scans with the existing scan tool but also provides tools for image annotation and data acquisition. The solution thus enables the storage of data and metadata for future correlation across a variety of beamline parameters set during the experiment.  
slides icon Slides MO2AO03 [12.892 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO03  
About • Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO04 Experimental Data Taking and Management: The Upgrade Process at BESSY II and HZB 84
 
  • R. Müller, H. Görzig, G. Hartmann, K. Kiefer, R. Ovsyannikov, W. Smith, S. Vadilonga, J. Viefhaus
    HZB, Berlin, Germany
  • D.B. Allan
    BNL, Upton, New York, USA
 
  The endeavor of modernizing science data acquisition at BESSY II started 2019 [*] Significant achievements have been made: the Bluesky software ecosystem is now accepted framework for data acquisition, flow control and automation. It is operational at an increasing number of HZB beamlines, endstations and instruments. Participation in the global Bluesky collaboration is an extremely empowering experience. Promoting FAIR data principles at all levels developed a unifying momentum, providing guidance at less obvious design considerations. Now a joint demonstrator project of DESY, HZB, HZDR and KIT, named ROCK-IT (Remote Operando Controlled Knowledge-driven, IT-based), aims at portable solutions for fully automated measurements in the catalysis area of material science and is spearheading common developments. Foundation there is laid by Bluesky data acquisition, AI/ML support and analysis, modular sample environment, robotics and FAIR data handling. This paper puts present HZB controls projects as well as detailed HZB contributions to this conference [**] into context. It outlines strategies providing appropriate digital tools at a successor 4th generation light source BESSY III.
[*] R. Müller, et.al. https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL02
[**] covering digital twins, Bluesky, sample environment, motion control, remote access, meta data
 
slides icon Slides MO2AO04 [2.522 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO04  
About • Received ※ 05 October 2023 — Revised ※ 26 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO05 Deployment of ADTimePix3 areaDetector Driver at Neutron and X-ray User Facilities 90
 
  • K.J. Gofron, J. Wlodek
    BNL, Upton, New York, USA
  • S.C. Chong, F. Fumiaki, SG. Giles, G.S. Guyotte, SDL. Lyons
    ORNL, Oak Ridge, Tennessee, USA
  • B. Vacaliuc
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Science, Scientific User Facilities Division under Contract No. DE-AC05-00OR22725.
TimePix3 is a 65k hybrid pixel readout chip with simultaneous Time-of-Arrival (ToA) and Time-over-Threshold (ToT) recording in each pixel*. The chip operates without a trigger signal with a sparse readout where only pixels containing events are read out. The flexible architecture allows 40 MHits/s/cm2 readout throughput, using simultaneous readout and acquisition by sharing readout logic with transport logic of superpixel matrix formed using 2x4 structure. The chip ToA records 1.5625 ns time resolution. The X-ray and charged particle events are counted directly. However, indirect neutron counts use 6Li fission in a scintillator matrix, such as ZnS(Ag). The fission space-charge region is limited to 5-9 um. A photon from scintillator material excites a photocathode electron, which is further multiplied in dual-stack MCP. The neutron count event is a cluster of electron events at the chip. We report on the EPICS areaDetector** ADTimePix3 driver that controls Serval*** using json commands. The driver directs data to storage and to a real-time processing pipeline and configures the chip. The time-stamped data are stored in raw .tpx3 file format and passed through a socket where the clustering software identifies individual neutron events. The conventional 2D images are available as images for each exposure frame, and a preview is useful for sample alignment. The areaDetector driver allows integration of time-enhanced capabilities of this detector into SNS beamlines controls and unprecedented time resolution.
*T Poikela et al 2014 JINST 9 C05013.
**https://github.com/areaDetector
***Software provided by the vendor (ASI) that interfaces detector (10GE) and EPICS data acquisition ioc ADTimePix3
 
slides icon Slides MO2AO05 [3.379 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO05  
About • Received ※ 04 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO06 Neutron From a Distance: Remote Access to Experiments 95
 
  • P. Mutti, F. Cecillon, C. Cocho, A. Elaazzouzi, Y. Le Goc, J. Locatelli, H. Ortiz
    ILL, Grenoble, France
 
  Large-scale experimental facilities such as the ILL are designed to accommodate thousands of international visitors each year. Despite the annual influx of visitors, there has always been interest in options that don’t require users to travel to ILL. Remote access to instruments and datasets would unlock scientific opportunities for those less able to travel and contribute to global challenges like pandemics and global warming. Remote access systems can also increase the efficiency of experiments. For measurements that last a long time scientists can check regularly on the progress of the data taking from a distance, adjusting the instrument remotely if needed. Based on the VISA platform, the remote access becomes a cloud-based application which requires only a web browser and an internet connection. NOMAD Remote provides the same experience for users at home as though they were carrying out their experiment at the facility. VISA makes it easy for the experimental team to collaborate by allowing users and instrument scientists to share the same environment in real time. NOMAD Remote, an extension of the ILL instrument control software, enables researchers to take control of all instruments with continued hands-on support from local experts. Developed in-house, NOMAD Remote is a ground-breaking advance in remote access to neutron techniques. It allows full control of the extensive range of experimental environments with the highest security standards for data, and access to the instrument is carefully prioritised and authenticated.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO06  
About • Received ※ 31 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AO07 Dynamical Modelling Validation and Control Development for the New High-Dynamic Double-Crystal Monochromator (HD-DCM-Lite) for Sirius/LNLS 100
 
  • T.R. Silva Soares, J.P.S. Furtado, R.R. Geraldes, M. Saveri Silva, G.S. de Albuquerque
    LNLS, Campinas, Brazil
 
  Two new High-Dynamic Double-Crystal Monochromators (HD-DCM-Lite) are under installation in Sirius/LNLS for the new beamlines QUATI (quick-EXAFS) and SAPUCAIA (SAXS), which requires high in-position stability (5 nrad RMS in terms of pitch) whereas QUATI’s DCM demands the ability to perform quick sinusoidal scans in frequencies, for example 15 Hz at 4 mrad peak-to-peak amplitude. Therefore, this equipment aims to figure as an unparalleled bridge between slow step-scan DCMs, and channel-cut quick-EXAFS monochromators. In the previous conference, the dynamical modelling of HD-DCM-Lite was presented, indicating the expected performance to achieve QUATI and SAPUCAIA requirements. In this work, we are going to present the offline validation of the dynamical modelling, comparing to the solutions achieved for the previous version of LNLS HD-DCMs. This work also presents the hardware-based control architecture development, discussing the loop shaping technique and upgrades in the system, such as the increase of the position resolution, synchronization of the rotary stages, and FPGA code optimization. Furthermore, we describe how the motion controller was developed, given the high-performance motion control, such as complex control algorithm in parallel with a minimal jitter and the expectations for the beamlines commissioning regarding detector and undulator synchronization.  
slides icon Slides MO2AO07 [2.432 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO07  
About • Received ※ 06 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 12 December 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)