Author: Westbrook, E.E.
Paper Title Page
TU1BCO05 Model Driven Reconfiguration of LANSCE Tuning Methods 267
 
  • C.E. Taylor, P.M. Anisimov, S.A. Baily, E.-C. Huang, H.L. Leffler, L. Rybarcyk, A. Scheinker, H.A. Watkins, E.E. Westbrook, D.D. Zimmermann
    LANL, Los Alamos, New Mexico, USA
 
  Funding: National Nuclear Security Administration (NNSA)
This work presents a review of the shift in tuning methods employed at the Los Alamos Neutron Science Center (LANSCE). We explore the tuning categories and methods employed in four key sections of the accelerator, namely the Low-Energy Beam Transport (LEBT), the Drift Tube Linac (DTL), the side-Coupled Cavity Linac (CCL), and the High-Energy Beam Transport (HEBT). The study additionally presents the findings of employing novel software tools and algorithms to enhance each domain’s beam quality and performance. This study showcases the efficacy of integrating model-driven and model-independent tuning techniques, along with acceptance and adaptive tuning strategies, to enhance the optimization of beam delivery to experimental facilities. The research additionally addresses the prospective strategies for augmenting the control system and diagnostics of LANSCE.
*R.W. Garnett, J. Phys.: Conf. Ser. 1021 012001
**A. Scheinker, Rev. ST Accel. Beams 16 102803 2013
***R. Keller, Proc of Part Accel Conf
****M. Oothoudt, Proc of Part Accel Conf, 2003, v4
 
slides icon Slides TU1BCO05 [2.886 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TU1BCO05  
About • Received ※ 06 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 12 December 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO03 Ongoing Improvements to the Instrumentation and Control System at LANSCE 979
 
  • M. Pieck, C.D. Hatch, H.A. Watkins, E.E. Westbrook
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work was supported by the U.S. DOE through the Los Alamos National Laboratory (LANL). LANL is operated by Triad National Security, LLC, for the NNSA of U.S. DOE - Contract No. 89233218CNA000001
Recent upgrades to the Instrumentation and Control System at Los Alamos Neutron Science Center (LANSCE) have significantly improved its maintainability and performance. These changes were the first strategic steps towards a larger vision to standardize the hardware form factors and software methodologies. Upgrade efforts are being prioritized though a risk-based approach and funded at various levels. With a major recapitalization project finished in 2022 and modernization project scheduled to start possibly in 2025, current efforts focus on the continuation of upgrade efforts that started in the former and will be finished in the later time frame. Planning and executing these upgrades are challenging considering that some of the changes are architectural in nature, however, the functionality needs to be preserved while taking advantage of technology progressions. This is compounded by the fact that those upgrades can only be implemented during the annual 4-month outage. This paper will provide an overview of our vision, strategy, challenges, recent accomplishments, as well as future planned activities to transform our 50-year-old control system into a modern state-of-the-art design.
LA-UR-23-24389
 
slides icon Slides WE2BCO03 [9.626 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO03  
About • Received ※ 30 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 19 November 2023 — Issued ※ 03 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)