Author: Wang, F.Y.
Paper Title Page
TUMBCMO14 Initial Test of a Machine Learning Based SRF Cavity Active Resonance Control 379
 
  • F.Y. Wang, J. Cruz
    SLAC, Menlo Park, California, USA
 
  We’ll introduce a high precision active motion controller based on machine learning (ML) technology and electric piezo actuator. The controller will be used for SRF cavity active resonance control, where a data-driven model for system motion dynamics will be developed first, and a model predictive controller (MPC) will be built accordingly. Simulation results as well as initial test results with real SRF cavities will be presented in the paper.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO14  
About • Received ※ 03 October 2023 — Revised ※ 14 November 2023 — Accepted ※ 27 November 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)