Author: Varadan, K.
Paper Title Page
FR2AO01 How Accurate Laser Physics Modeling Is Enabling Nuclear Fusion Ignition Experiments 1620
 
  • K.P. McCandless, R.H. Aden, A. Bhasker, R.T. Deveno, J.-M.G. Di Nicola, M. Erickson, T.E. Lanier, S.A. McLaren, G. Mennerat, F.X. Morrissey, J. Penner, T. Petersen, B.A. Raymond, S.E. Schrauth, M.F. Tam, K. Varadan, L. Waxer
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
This last year we achieved an important milestone by reaching fusion ignition at Lawrence Livermore National Laboratory’s (LLNL) National Ignition Facility (NIF), a multi-decadal effort involving a large collaboration. The NIF facility contains a 192-beam 4.2 MJ neodymium glass laser (around 1053 nm) that is frequency converted to 351 nm light. To meet stringent laser performance required for ignition, laser modeling codes including the Virtual Beamline (VBL) and its predecessors are used as engines of the Laser Operations Performance Model (LPOM). VBL comprises an advanced nonlinear physics model that captures the response of all the NIF laser components (from IR to UV and nJ to MJ) and precisely computes the input beam power profile needed to deliver the desired UV output on target. NIF was built to access the extreme high energy density conditions needed to support the nation’s nuclear stockpile and to study Inertial Confinement Fusion (ICF). The design, operation and future enhancements to this laser system are guided by the VBL physics modeling code which uses best-in-class standards to enable high-resolution simulations on the Laboratory’s high-performance computing platforms. The future of repeated and optimized ignition experiments relies on the ability for the laser system to accurately model and produce desired power profiles at an expanded regime from the laser’s original design criteria.
LLNL Release Number: LLNL-ABS-847846
 
slides icon Slides FR2AO01 [3.580 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2AO01  
About • Received ※ 26 September 2023 — Revised ※ 12 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)