Paper | Title | Page |
---|---|---|
MO2AO04 | Experimental Data Taking and Management: The Upgrade Process at BESSY II and HZB | 84 |
|
||
The endeavor of modernizing science data acquisition at BESSY II started 2019 [*] Significant achievements have been made: the Bluesky software ecosystem is now accepted framework for data acquisition, flow control and automation. It is operational at an increasing number of HZB beamlines, endstations and instruments. Participation in the global Bluesky collaboration is an extremely empowering experience. Promoting FAIR data principles at all levels developed a unifying momentum, providing guidance at less obvious design considerations. Now a joint demonstrator project of DESY, HZB, HZDR and KIT, named ROCK-IT (Remote Operando Controlled Knowledge-driven, IT-based), aims at portable solutions for fully automated measurements in the catalysis area of material science and is spearheading common developments. Foundation there is laid by Bluesky data acquisition, AI/ML support and analysis, modular sample environment, robotics and FAIR data handling. This paper puts present HZB controls projects as well as detailed HZB contributions to this conference [**] into context. It outlines strategies providing appropriate digital tools at a successor 4th generation light source BESSY III.
[*] R. Müller, et.al. https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL02 [**] covering digital twins, Bluesky, sample environment, motion control, remote access, meta data |
||
Slides MO2AO04 [2.522 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO04 | |
About • | Received ※ 05 October 2023 — Revised ※ 26 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 16 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMBCMO17 | FAIR Data of Physical and Digital Beamlines | 1231 |
|
||
Simulations play a crucial role in instrument design, as a digital precursor of a real-world object they contain a comprehensive description of the setup. Unfortunately, this digital representation is often neglected once the real instrument is fully commissioned. To preserve the symbiosis of simulated and real-world instrument beyond commissioning we connect the two worlds through the instrument control software. The instrument control simultaneously starts measurements and simulations, receives feedback from both, and directs (meta)data to a NeXus file - a standard format in photon and neutron science. The instrument section of the produced NeXus file is enriched with detailed simulation parameters where the current state of the instrument is reflected by including real motor positions such as incorporating the actual aperture of a slit system. As a result, the enriched instrument description increases the reusability of experimental data in sense of the FAIR principles. The data is ready to be exploited by machine-learning techniques, such as for predictive maintenance applications as it is possible to perform simulations of a measurement directly from the NeXus file. The realization at the Aquarius beamline * at Bessy II in connection with the Ray-UI simulation software ** and RayPyNG API *** serves as a prototype for a more general application.
* https://www.helmholtz-berlin.de/forschung/oe/wi/optik-strahlrohre/projekte/aquariusen.html ** https://doi.org/10.1063/1.5084665 *** https://pypi.org/project/raypyng |
||
Slides THMBCMO17 [0.632 MB] | ||
Poster THMBCMO17 [0.828 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO17 | |
About • | Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 14 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMBCMO18 | Advancements in Beamline Digital Twin at BESSYII | 1236 |
|
||
This presentation reports on the status of beamline digital twins at BESSY II. To provide a comprehensive beamline simulation experience we have leveraged BESSY II’s x-ray tracing program, RAY-UI[*], widely used for beamline design and commissioning and best adapted to the requirements of our soft X-ray source BESSY II. We created a Python API, RayPyNG, capable to convert our library of beamline configuration files produced by RAY-UI into Python objects[**]. This allows to embed beamline simulation into Bluesky[***], our experimental controls software ecosystem. All optical elements are mapped directly into the Bluesky device abstraction (Ophyd). Thus beamline operators can run simulations and operate real systems by a common interface, allowing to directly compare theory predictions with real-time results[****]. We will discuss the relevance of this digital twin for process tuning in terms of enhanced beamline performance and streamlined operations. We will shortly discuss alternatives to RAY-UI like other software packages and ML/AI surrogate models.
[*]https://doi.org/10.1063/1.5084665 [**]https://raypyng.readthedocs.io/ [***]https://doi.org/10.1080/08940886.2019.1608121 [****]https://raypyng-bluesky.readthedocs.io/ |
||
Slides THMBCMO18 [0.333 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO18 | |
About • | Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 16 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |