Author: Sjöblom, P.
Paper Title Page
TUMBCMO19 MAX IV Laboratory’s Control System Evolution and Future Strategies 395
 
  • V. Hardion, P.J. Bell, T. Eriksson, M. Lindberg, P. Sjöblom, D.P. Spruce
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV Laboratory, a 4th generation synchrotron radiation facility located in southern Sweden, has been operational since 2016. With multiple beamlines and experimental stations completed and in steady use, the facility is now approaching the third phase of development, which includes the final two of the 16 planned beamlines in user operation. The focus is on achieving operational excellence by optimizing reliability and performance. Meanwhile, the strategy for the coming years is driven by the need to accommodate a growing user base, exploring the possibility of operating a Soft X-ray Laser (SXL), and achieving the diffraction limit for 10 keV of the 3 GeV. The Technical Division is responsible for the control and computing systems of the entire laboratory. This new organization provides a coherent strategy and a clear vision, with the ultimate goal of enabling science. The increasing demand for more precise and efficient control systems has led to significant developments and maintenance efforts. Pushing the limits in remote access, data generation, time-resolved and fly-scan experiments, and beam stability requires the proper alignment of technology in IT infrastructure, electronics, software, data analysis, and management. This article discusses the motivation behind the updates, emphasizing the expansion of the control system’s capabilities and reliability. Lastly, the technological strategy will be presented to keep pace with the rapidly evolving technology landscape, ensuring that MAX IV is prepared for its next major upgrade.  
slides icon Slides TUMBCMO19 [8.636 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO19  
About • Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 24 November 2023 — Issued ※ 29 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2BCO01 Synchronized Nonlinear Motion Trajectories at MAX IV Beamlines 1160
 
  • P. Sjöblom, H. Enquist, Á. Freitas, J. Lidón-Simon, M. Lindberg, S. Malki
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The motions at beamlines sometimes require components to move along non-trivial and non-linear paths. This type of motion can be achieved by combining several simple axes, typically linear and rotation actuators, and controlling them to perform synchronized motions along individual non-linear paths. A good example is the 10-meter-long spectrometer at MAX IV Veritas beamline, operating under the Rowland condition. The system consists of 6 linked axes that must maintain the position of detectors while avoiding causing any damage to the mechanical structure. The nonlinear motions are constructed as a trajectory through energy or focus space. The trajectory changes whenever any parameter changes or when moving through focus space at fixed energy instead of through energy space. Such changes result in automated generation and uploading of new trajectories. The motion control is based on parametric trajectory functionality provided by IcePAP. Scanning and data acquisition are orchestrated through Tango and Sardana to ensure full motion synchronization and that triggers are issued correctly.  
slides icon Slides TH2BCO01 [0.884 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH2BCO01  
About • Received ※ 05 October 2023 — Revised ※ 24 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 22 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)